2014학년도 6평 수학 A형, B형해설 파일 올려요~~
2014학년도 6월 평가원 해설지(B)_해설완성본-hwp.pdf
2014학년도 6월 평가원 해설지(A)_해설완성본-hwp.pdf
에휴~~ 노가다 해서 이제 해설 파일 완성하였네요...손으로 푸는 것과 달리 워드 작업도 하고, 그래프도 그려 넣느라 힘들었네요..
하지만 여러 분들이 보기에는 한결 예쁘고, 깔끔할 겁니다.... 많이 많이 배포 해 주세요...~~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
없으니까!
-
중대 마크에 3
오른쪽 위에 네모는 무엇을 의미하죵??
-
내가 삼수까지 온 게 탐구 때문임
-
수능 날 수시 학종이나 교과 발표 나는 수도권이나 인서울 학교 있음? 좀 높은 대학 중에
-
네 존나어려워요시발여러분과탐하지마세요....... 걍 과1사1이라도할걸....
-
수학은 이젠 뭐 3등급은 안바라고 영어는 풀때마다 71~73이래서 ㅈㄴ 불안함...
-
별0개 테러하고 쳐나가네 신고나 잘먹어라 ㅋㅋㅋ 그정도해서 다 대학잘가면 나라에...
-
22가 더 어려운거 맞죠…? 실력이 떨어진게 아니라.. 24는 10번대는...
-
표본급상승 이악물고 무시하며 22수능이 지금 나와도 1컷이 45아래일 거네 뭐네...
-
수학 질문2 5
여기서 x+1은 약분 가능한가요?? 1번그림이 맞나요 아님 2번처럼 x=-1일때...
-
컷보면 어려운 시험지 아닌데
-
근데 내년엔 진짜 망할듯
-
그의 부활을 기다립니다...
-
국어영어는 2,3점/100점 이라서 실수를 해도 연속적으로다가 원래실력 자리에...
-
순서 빈칸 공부안해서 ㅈ댓는데 어칼까요
-
마지막 회찬데 개같이 멸망 ㅅㅂ...
-
통합가톨릭대 생겼으면 서강대(=통합가톨릭대 신촌캠퍼스) 입결 어떻게 되려나.
-
드브디지뿌겟노
-
물론 작년에 비해서는 좀 악화됐을 순 있겠지만 올해 물리1 현정훈 단과 브릿지,서바...
-
2024 년 11 월 11 일 | 제 1217 호 2024 수능 D-3...
-
굳이? 싶음
-
떡을 치다 16
3번인가 1번은 아닌거 같은데 2번은..
-
예열 목적 생각하면 이게 더 맞는거 같아서.
-
표정 오묘하다.
-
ㅈㄴ고여가지고
-
아차차
-
아 영어 ㅅㅂ 2
한동안 안하더니 ㅈ댓네
-
근데 이게 1컷이 86이라고...?뭐지....
-
미방이므ㅓ에요 15
궁금
-
Zola임당 3일 간의 선물과 수능을 위한 조언입니다. 1. 3일 간의 선물...
-
반박시 탕!
-
결국 과탐 망했다는 거잖아? 뭐 거기에 동의할 사람이 없지는...
-
오랜교육으로 이성을 발휘하여 지성적 덕을 습득하고 이성적부분인 지성적덕을...
-
망언폭격 맞고왔는데 계속 곱씹어보게돼서 진정이 안댐요
-
올해69+작수 할까요 아님 올해69+올해 10평 할까요?
-
초혼에서 임의 죽은 상황은 인지하고 있지만 죽음을 인정하지 않으려는 태도를 가지고 있는게 맞나요?
-
동덕여대 공학 9
동덕여대가 공학 되면 무슨 문제가 있나요??? 여대 희망자가 아니라 반대시위하는...
-
예민한 시기지만 진짜 조금만 더 참아야돼 끝까지 버티고 극복할거야 틀린 개수 대신...
-
난생명1년했는데도 10덮31점나왔는데 내가저능아인건가
-
영어 21~24까지 집중적으로 벼락치기 하려고 하는데 추천하시는 교재 있나요?...
-
학교와서 풀고있는데 답지를 두고와서 혹시 1,2 회차 빠른정답 찍어서 보내주실 분 계신가요?
-
해설지 보니 아예 a=2, (f(x)-1)^2 상황 빼먹었던데 발문에도 a=2인거...
-
맨날 게살죽만 먹었는데 다른거 먹고싶어요
-
음식갖고 장난치면 안되는데
-
황용일샘 독서요 0
황용일샘 독서도 잘가르치시나요?
-
1번 13 극한계산 14 등차수열 신유형 15 정적분함수 넓이 극댓값 21 사차함수...
-
수학 질문 7
x는 2에서만 불연속 아닌가요?? x-1 약분하면 안되는건가요??
-
이때까지 6 9월에 나온 작가들 수능에도 나온적 있음? 정철은 그래도 예외인가
-
친구중에 전국nn등에는 들 정도로 잘 하는애가 있는데 얘가 말하는거 들을 때마다 막...
정말 감사합니다....
일등으로 다운받고 댓글 달앗네요...
열심히 공부할게요 ㅜㅜ 그리고 쪽지 보내드렷는데 수학관련 상담 ㅜㅜㅜ
답장좀 해주시면 감사하겟습니다....
일단 a형 해설지도 작업 해야 하고 6평 분석노트 a형 b 형이 나와야 해서 그거 먼저 할께요 그런다음에 상세히 답변 드리죠
고맙습니다!!
넵~~30문항 해설에만 그치지 마시고, 연계된 수능기출과 EBS를 모조리 공부하셔야 합니다~~~ 그리고 향후의 공부 일정까지 세워 보시고....
6평 평가자료는 분석노트에서 말씀드리겠습니다.~~
고맙습니다!
마찬가지로 30문항 해설에만 그치지 마시고, 연계된 수능기출과 EBS를 모조리 공부하셔야 합니다~~~
그리고 향후의 공부 일정까지 세워 보시고....
6평 평가자료는 분석노트에서 말씀드리겠습니다.~~
감사합니다 ^^ ~ 선생님의 킬러문항강의를 많이 연습해서 그런지 이번시험은 평소보다 좀 더 쉽게 느껴진것같아요.
분석노트도 기대하겠습니다!
감사합니다 분석노트는 월요일에 만날 수 있습니다
오늘에 Grand Final 나왔네요
폭풍 교재 작업 중...
잘 보겠습니다
넵~~~ 열공해서 좋을 결과 있으시길~~~
동훈쌤!!! 21번 해설지에 f(x) 미분하신거 하나 잘못된게 잇는 거 같아요!!
(x≥0) 일때 6x-a가 아니고 3x^2-a 인거같아요!!
다른건 너무 깔끔하셔요ㅎㅎ감사합니다!
A형 이죠? 에구 고마 우셔라~~~~
수정해서 다시 올렸습니다.. 감사~~
너무 익숙한 닉네임 이네요... ^- ^
죄송한데요ㅠㅠ수학A형18번 변BH+변HA=루트5k/2+2k/루트5 왜이렇게나온거에요??....
직각삼각형의 세 변의 길이가 2, 1, 루트5 이렇게 나오죠?
그런데 내접하는 직사각형의 가로 2k, 세로 k 라고 한다면 이 길이를 통해 다른 작은 직각삼각형의 다른 변의 길이도 알 수 있는겁니다.
ebs 수능특강과 완성 다 풀고 샘 ebs변형푸는것과 개념정리를 이 번 한달간 하는게 제일 좋을까요??
그 이전에 일단 이번 6평에 좋은 점수를 받았다 하더라도 이번 6평과 연계된 기출과 EBS를 샅샅이 찾아 분석 + 평가하는 시간을 조금 더 갖으세요.
제가 6평 분석노트에서 이런 점들을 부각시킬 것이며, 예전과 다른 경향성 들을 구체적으로 파고들어 학생들에게 전달하려고 합니다.
그리고 나서 향후의 공부 방향을 설정하도록 하세요... EBS변형도 도움 빠르게 돌리시길....
30번 문항 (n,m) 이 아니라 (m,n)을 구하는 문제예요!
그리고 (1,20)를 (1,2)로 잘못쓰신거 같아요~ 오타내신듯..ㅎㅎ
감사해요~ 잘봤습니다!
쵸고빅님 고마워요~~~ 지금 6평 분석노트 만드는데 , 미리 오타를 잡아 내니 다행이네요...ㄱ ㅅ
18번에서 왜 두 직사각형이 닮음인가요?
두 직사각형의 가로, 세로의 길이의 비가 1:2로서 동일하기 때문입니다.
A형 21번과 관련하여 질문 드립니다
극댓값의 정의는 함수의 개형이 증가에서 감소로 바뀔 때로 알고 있습니다.
a>0일 때 함수 f(x)는 x=0에서 미분은 안 되겠지만,
극댓값 0을 가지지 않나요?
따라서 극댓값이 5라는 문제의 조건에 위배되므로 a<0라는 것으로 문제를 풀어나가
야 할 것 같습니다만........
네 맞아요 극대값이 0 이라서 모순입니다
해설에는 a>0일때 함수 f(x)의 극댓값이 존재하지 않는다고 나와 있어서
수정이 필요하다고 생각해서 언급했습니다......
감사합니다. 6평 분석노트 만들때에는 반영했네요.. 고맙습니다~~~
코난샘 혹시 모평 당일날 올려주신 현장 풀이 그대로 있는 시험지 파일 다시 올려주실수 있나요...? 어제 저장을 안해놔서 오늘 다시 찾으려고 하니 없어서요... 혹시 그대로 있는데 제가 못찾고 있는 건가요...? ㅠㅠ
헉~~ 현장 풀이요? 워드 작업 하고 나서는 필요 없겠다 싶어서 버렸는데....
그리고 그 글도 해설지 Reload 시키고 나서 제가 지웠습니다...
혹시 무엇 때문에 그런 건지 물어 보면 제가 답변해 드릴께요....
선생님 A형 10번에서 연속인 걸 찾을 때 좌극한이랑 우극한이 같고 그 극한값이 함수값이랑 같아야 연속이잖아요 근데 해설에 함숫값이랑 우극한만 따져봤는데 어차피 좌극한이랑 함숫값이 같아서 생략한 건가요? 이전에 어떤 문제를 풀 때도 해설에는 함숫값이랑만 비교하더라고요 아직 개념 공부를 도함수의 활용 전까지 해서 모르는게 많습니다 어차피 다항함수니까 극한값이랑 함숫값이 같아서 그냥 그렇게 한건가요? 답변 부탁드리겠습니다
네, 좌극한과 함수값은 당연히 같이 때문에 좌극한을 굳이 쓸 필요가 없어서요..
님이 말씀하신 것처럼 다항함수이니까 극한값이랑 함숫값이 같아서 그렇게 한 거 맞아요~~~~
질문이 있어서 쪽지 보냈습니다. 답변 부탁 드려용
네 답변 드렸어요~~~