미적분 자작문제 하나!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
목동시대 문과기준 합격할까요? 최저는 맞췄는데 수학을 너무못봐서 혹시나 해서요...
-
나머지 학과들은 6,7,8칸 뜨는데 저 학과만 3칸떠요..
-
선착한명 고고햇
-
아니면 원광대 수의대가 먼저 생길까
-
대학을 높이고 싶다기보다는 내가 잘하는게 없어서 수능을 더 치고싶구나 2
그냥 잘하는게 수능뿐인 새끼 ㅋㅋㅋㅋㅋㅋㅋ 아…. 적백드가자 ㅋㅋ
-
25수능 공1미3 백분위94 지금 집에있는게 파이널 간쓸개 두권 리트300제...
-
정법 개념강의 들으려는데 9강/30강 올라와져있어서요 이번 겨울방학때 다 올라오겠죠 ??
-
건물비교 2
1. 2.
-
냥냥
-
컴공x 실제로 상경+공대 동시에 하는사람 많은지 궁금해요
-
댓글좀여 동생 커리 짜는데 마더텅 자이스터리 안하고 수분감 들가두 되나여.. 현우진...
-
셋 중에 뭐가 제일 악질이에요?
-
아직도ㅠㅠ
-
동국대나 홍익대 사범대에서 비사범대(공대같은)로 전과 가능한가요?...
-
서울대 성적 3
30초펑 ()
-
이거 어떤가요 나군은 12등인데 저보다 윗등수인 사람들은 대부분 다른대학 적정~소신...
-
같이 들은사람잇음? 그냥갑자기 궁금하네
-
이거 ㄹㅇ ㅈ될 수도 있음?
-
그 돈 주고 살만함?? 참고로 포켓몬 게임 한 번도 해본적 없음…
-
수1 수2는 한바퀴씩 돌리는데 2주도 안걸렷는데 확통만 지금 2주째 1/4바퀴도...
-
?
-
그냥 기업에서 수시 / 정시모집을 하지 수시점수 정시점수로 입사하는거임
-
감당 가능함…? 나는 아니고 지인 얘긴데 궁금해서
-
초1때 영수과외 했었는데 그때 각 주2회 2시간하고 25만원 들었던 기억이 지금은...
-
졸려 ... 14
응..
-
재수 방법 추천 0
이전에도 글 몇 개 썼었는데요, 메디컬을 지망하다가 최저를 맞추지 못해서 재수를...
-
진학사 기준 가군 스나 (1칸) 나군 단국대 천안 (안정 6-7칸) 다군 경기대...
-
삼수 고민 3
안녕하세요 제 글을 작년에 읽으신 분이 아직도 계시진 않겠지만 현역 3모...
-
인풋 아웃풋 다 고려하면 어디가 제일 괜찮나요?
-
휴반vs무휴반 1
제가 이제 내년으로 사수째인데 반수로 할 것 같아요. 둘 중에 뭐가더 나을까요..?...
-
밸런스게임 내주세요 17
? vs ? 같은 것들 해주시면 제가 답변해볼게요 주제는 상관x
-
서울대는 수학이랑 영어 있던데 연대는 뭐 따로 없나요?
-
반수시즌되면 얼마나 사라짐요? 메디컬 발사기라던데
-
겁나좋네 유튜브로 봤지만 거기서 건물 젤 좋은듯여
-
생각보다 너무 많이 썼네
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
차가 겉만 이쁘다는이유로 내실은 개꾸진데 비싸서 거품있는거랑 차가 겉은 별론데...
-
수능 수학 공부를 다시 해보려고 하는데 어떤식으로 하면 좋을까요? 제가 생각하기에는...
-
오르비와함께
-
님들은 어디감? 설훌리는 아님;;
-
단과대 같은 경우에 내가 들었던 과목 성적이전같은거 되려나
-
들어가기 힘드나요? 장학은 바라지도 않고 들어가기만 하고 싶은데
-
ㄹㅇ취업못하는건가…
-
영화 작가들인데 1월 초에 일정 잡고 인터뷰 가능하냬서 연락처 줌 사실 좀 ㅇㄱㄹ고...
-
이럼 무서워서 도망가고싶어지잖아
-
그 무슨 블록체인에 박제하는거 첨 가입했을때 신기했는데
-
사문 한번도 안해봤는데 만약 했다면 고운쌤꺼 들을거 같음,, 외모가 내스타일이양><
-
요즘 많이 바뀌려고 하는 모습이 보여서 상당히 좋긴 한데요 아무래도 글삭 기능이...
-
다 좋은 대학입니다
-
아니면 원래 있던 시발점 들어야함?
문제 푸는데 큰 지장있는건 아니겟...지만? g (0)>0 입니다
풀이좀 올려주세요
일단 g (-1)=0, f(x)=f (x) 놓고 시작
(가)조건에서 f (3)=|f'(3)|>=0이므로 결국 f (3)>=0
(나)조건 부등식 왼쪽은 정적분~급수에서 오른쪽 높이잡기한것
거기에 리미트 n무한대 붙이면 바로 오른쪽 식과 똑같이 정적분됨
근데 오른쪽 높이잡기 한게 정적분 값보다 작으려면 그함수는 감소함수여야함
(증가함수면 오른쪽 높이잡기한게 정적분 보다큼)
근데 a,h에 따라 g (x)는 양의실수에서 항상 감소
따라서 x> 에서 g'(x)=f(x)<=0
이제 (가), (나)조건을 합치면 x>0에서 f (x)<=0이어야 되는데 f (3)>=0이므로
f (3)=f' (3)=0이 되야하고 (0에서 극대값이고 그값이 x축과 접함)
f는 최고차항이 음수인 삼차함수 그래프
g (x)는 도함수인 f (x)그래프에 따라 개형을 그리면 최고차항이 음수이고
x=0에서 극대값을 가지고 g (x)=0이 x=3에서 삼중근,x=-1에서 한개 실근을 가져야 |g (x)|가 양의실수에서 미분가능
이제 대입해서 계산하면 답5번
첫줄에 g'(x)=f (x)
도출된 g(x)가 항상 나 조건을 만족하나요? g(x)에서 x=3에서 양음 부호가 바뀌는데 나 조건에서 왼쪽 식에서 a=2 h = 2라고 가정하면 x=2에서 x=4까지의 오른쪽 잡기가 되는데 이때 오른쪽으로 잡아서 생기는 직사각형들의 면적이 x=3 이하에서는 양수이고 x=3 이상에서는 음수인데 이때 x=2에서 x=4까지의 적분값이 크다고 확신할 수 있는지 궁금합니다.
감소하는 형태로 X축 밑으로가면 직사각형의 넓이가 정적분의 넓이 값보다 커지지만 값이 음수이므로 필연적으로 항상 작을 수 밖에 없습니다
아 그렇네요 감사합니다.
댓글다신줄 몰랐네요..ㅈㅅ알람이 한번만 떠서 달빛님이 잘 설명해드림 ㅇㅇ
만약 f의 중근아닌 또 다른 실근이 x>0에서 존재하면 위의 해설과는 다른 결과를 낳을 수도 있지 않나요?
중근아닌 실근이 x>0에서 존재하면 양의실수에서 f (×)<=0라는 조건을 만족시키지 않으니 실근한개는 음수에서 생겨야 하겠져
아 g(x)가 항상 감소하니 맞군요
이 문제 (가) 표현이 마음에 드네요 평소에도 이런 표현으로 문제 나오지 않을까 생각했던 부분인데 굉장하십니다 ㅋㅋ
뭘요 ㅋㅋ 작년수능b 30번 f'(x)=무리식>=0 보고 좋아보여서 절댓값으로 바꿔본 거 뿐이에요
미적자작문제 검색하다 풀어봤는데 정말 좋네요^^
미적분 자작문제 시간되실때 더 올려주세요!ㅎㅎ
문제 되게 좋네요~
감사합니다 자주풀러오세요