[박수칠] 2017학년도 수능 6평 수학 가형 30번 풀이
2017수능_6평_가형30.pdf
6평 잘 보셨나요?
생각보다 잘 봐서 만족스러운 분들도 있을 것이고,
그 동안 노력한 것에 비해 점수가 낮아서 불만인 분들도 있겠지만…
오늘 시험은 수능이 아니잖아요.
잘봤다고 자만하지 말고,
못봤다고 포기는 더더욱 하지 말고... (이제 시작입니다.)
오늘 시험을 통해
자신의 부족한 부분, 채워야 할 부분을 제대로 파악해서
9평 대비 시작하시기 바랍니다.
저도 가형 주요 문제 위주로 풀어봤는데
30번이 참 어렵네요. 계산이 많이 복잡하고…
최근 수능/모평 가형 30번들에 비해
정답률이 많이 떨어지지 않을까 싶습니다.
아래에 풀이 과정 올리니 학습에 참고하세요~ ^^
----------------------------[알림]---------------------------
한석원 선생님 해설강의를 보니 제 풀이에 오류가 있네요 ㅜㅜ
문제가 되는 부분은 여덟 번째줄 ~ 열 세 번째줄의
①에 x = -a/2를 대입해서 a의 값을 구하는 부분입니다.
자세한 내용은 한석원 선생님 해설강의를 참고하세요.
(해설 끝 부분에 저 풀이가 왜 문제인지 자세히 설명해주십니다.)
-------------------------------------------------------------
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수시 = 지수추종 이거인듯
-
나는 유전적으로 안되는구나 합리화하면서 공부 접고 살았는데 하다보니 의지만 있으면...
-
다 어디갔니
-
6시 조발 실패..... 결국....진짜 내일 6시인건가..... 빨리 알려주세요ㅠㅠ
-
우울하다 일반으로 655.XX였는데…. 교과우수는 떨어질 각인데… 컨설팅 받고 스나...
-
이미지t 커리 0
이미지t 미친개념 다 듣고 미친기분하고 있는데 다른 강사분의 개념강의를 더 들을...
-
근데 뭐 여기 N수하는사람 많고 나도 N수하긴할건데 2
N수 ㅈㄴ많아지는게 사회적으로 좋은게 아닌건 맞는듯..따지고보면 다 상위권 인재들의...
-
어디부터인지 알 수 있을까요??
-
1주단위로 사는거라 테슬라는 59만 단위로 살수있는거죠 토스로그냥 시장가로 사면...
-
저녁여캐투척 11
음역시귀엽군
-
과학 하나 1이여도 애초에 사과탐이면 못 받나요?
-
내일이면 조발 없는거잖아
-
ㅇㅇ
-
추합 질문 0
만약 A대 최초합하고 등록했는데 B대학 추합하면 A대학 등록취소하고 B대학 등록하는건가요?
-
다 행 이 다
-
쵸비도 죽쑤네
-
소수과인가요 아님 중(소)형과인가요?
-
고대 조발 가자 0
ㅈㅂ
-
[속보]‘박사방 3배’ 234명 잔혹 성착취…텔레그램 ‘자경단’ 검거 2
중·고교생도 가담… 총책 ‘목사’ 10대 10명 성폭행 경찰, 첫 텔레그램 협조...
-
최초합권이랑 완전앞쪽예비 다 들어온편이였나요?? 특히 소수과분들 궁금해요 점공...
-
꼭 상위과 아니여도 한 중간과정도만 되도 개애매함…
-
몸에 활력이 생기고 머리가 맑아지고 피부가 좋아지고 입맛이 돌아오는거 같다
-
300일 동안 16시간씩 공부하면 현실적인 마지노선 어디임.. 언어이해 118...
-
사가면 뽀뽀해줌
-
얘 65X로 고경씀ㅋ
-
이거만 해도 대학가기 널널해질듯 대학 입학한 그 해 수능은 응시금지 이거 진짜 왜 안함?
-
수시는 안정적인데 정시는 극도로 불안정하네 한 문제 더 맞히면 대학이 바뀌는 게...
-
ㄱㄱㄱㄱ
-
800선 복규 2
-
.
-
큰거 바람 6
끙차..
-
학교 안나갈건데 새터 가보고싶음..
-
n³이랑 곱했을때 수렴시키기어러운꼴이라?ㅠㅠ
-
담당자님들도 바쁘신 거 알겠고 문자나 연락이 저 한명한테만 오는 게 아니니까...
-
레테크에 투자하세요 오늘 새벽까지 레테크해서 (투자하신 금액)/(총 투자받은 금액)...
-
2230맞은 1컷수준이고 범준 스블 수2/미적(미분법적분법부분만) +시대라이브...
-
몽땅 지2 강제응시 시키고싶다 만표99
-
몇번까지 돌것같음?
-
어휴
-
오티나 새터 있나요 올해? 만약 휴학이면 본가에 계시나요 아니면 근처에서...
-
ㄷ으로 시작하는 8
초성 네글자만 보면 이젠두주순빈 이외엔 연상되지않아
-
경잡대 가게생겼네. ㅅㅂ 갭차이너무큰데
-
어이가 없네 ㅋㅋ 당근 이 싸가지 없는 3끼가
-
요즘 정시 국어는 어떻게 공부해야 하는지 의견을 듣고 싶습니다. 7
안녕하세요! 현재 2학년 끝내고 3학년 올라가는 대학생이자 예비 군인입니다. 다름이...
-
얘가 여기에 원서를 썼다고?? 할듯
-
오오옷...헉 0
감사합니다
-
물어보기도 거시기하고 참
빠르다... 난이도어땟나요?
가형 주요 문제만 살펴봤는데
27+2+1로 볼 수 있지 않을까 싶어요.
30번이 너무 복잡함 ㅡㅡa
저 여기서 30분 갈아넣음 ㅋㅋㅋㅋ 똑같이 풀었네요
30분... 대단하네요!
전 계산이 자꾸 틀려서 더 걸렸어요 ㅜㅜ
풀이에 확신은 왓엇는데 계산틀릴까봐 검산만 4번정도 햇네요ㅋㅋㅋ
그러니까요... 이 정도로 계산 많이 하는 문제는
2014 수능 B형 30번 이후 처음인 듯 싶습니다.
(처음 답이 네 자리가 나와서 급당황 ㅎㅎ)
96점이면요?? ㅠ
1컷 96 예상합니다.
ㅎㅎ 그런데 요사이 나오는 오르비 실모에 적응되어 있다면 이정도 계산은 그닥 어렵지 않습니다^^
30번 연습용으로 독특한 발상의 문제들이 좋다고 생각했는데
오늘 보니 복잡한 계산 문제도 많이 연습시켜야겠네요.
(계산 복잡한 것 싫어했는데 ㅜㅜ)
올해는 오르비 실모, N제 더 잘 나갈듯 싶어요 ^^
박상칠선생님! 항상 감사합니다 ㅠㅠㅠㅠ 박수칠 미적2 책으로 3월 새학기때부터 6월까지 공부했습니다. 대학을 다니던 도중 저희 과가 없어지게되서 체념하면서 수능공부나 다시해볼까 이런생각하던중 오르비에 들어와서 선생님 기본서와 인강을 병행해서 이번 모의평가 96점이라는 점수 제가 얻게되었습니다. 정말 감사합니다.
저야말로 책 쓴 보람을 느끼게 해주셔서 정말 감사드립니다!
남은 시간 동안 30번 문제 대비도 충실하게 하셔서
9평, 수능에서 꼭 만점 받으시기 바랍니다 ^^d
아주 잘 읽었습니다. 정리를 잘 해두셨더군요.
선생님이 정리를 잘 해두시고 풀이를 읽으면서 제가 '출제오류'라고 착각한 부분이 있었습니다.
한가지 아쉬운 점이 있다면, 도함수 f'(x)=-3bsinx-5csinx 부분에서 x=a/2를 대입하는 부분이었습니다. 사실 저 함수는 닫힌구간 [-a/2, a/2]부분에서 정의가 되는데, 도함수를 구해보면 열린구간 (-a/2, a/2)에서 성립하게 됩니다. 따라서 x=a/2를 대입할 수는 없게 되고, 대신 좌극한까지는 구해볼 수 있지만 좌미분계수=도함수의 좌극한은 항상 성립하지 않기 때문에 살짝 의문이 남게 됩니다.
물론 이 문제에서는 좌미분계수로 '직접'구해보면 어렵지 않게 같은 답을 유도해낼 수 있습니다. 아마 선생님께서도 일부러 구간을 쓰지 않은 이유도, 학생들이 이해하기 쉽게 편의상 미분 후 대입하는 풀이를 쓰시지 않았나 생각합니다. 사실 좌미분계수!=도함수의 좌극한 의 경우는 darboux's theorem를 이용해보면 도함수가 진동하는 모양인 경우라고 알려져 있습니다만 하여튼...
아무튼 풀이 정리 잘 봤습니다. 감사합니다.
돋네님 예리하십니다 ^^
그 부분 설명할까 하다가 너무 깊이 들어가는 것 같아서 안넣었거든요.
풀이 올리면서 이 부분에 대해 질문하는 분이 있지 않을까 싶었는데 역시!
일단 x = a/2에서 함수 f(x)가 미분가능함이 보장되어 있기 때문에
구간 [ -a/2 , a/2 ]에서의 함수식과 미분계수의 정의로 x = a/2에서의
좌미분계수를 구하면 그것이 곧 f’( a/2 )가 됩니다.
하지만 계산이 번거롭죠.
그래서 본문에서는
함수 f(x)가 x = a/2에서 미분가능함이 보장되어 있고,
구간 ( -a/2 , a/2 )에서 f(x)의 도함수를 구할 수 있으므로
그 도함수 f'(x) = -3b sinx - 5c sinx에 x = a/2를 넣어서
함수 f(x)의 좌미분계수를 구한 다음, 그것을 미분계수로 삼았습니다.
물론 돋네님 의견처럼
특정 위치로 다가갈 때 그래프가 한없이 진동하는 함수, 예를 들어
x < 0일 때 f(x) = x² sin 1/x, x ≥ 0일 때 f(x) = 0 …(1)
와 같은 함수에서는 (좌미분계수) ≠ (도함수의 좌극한)이 되기도 합니다.
하지만 6평 30번의 경우,
여기에 해당되지 않기 때문에 문제 없구요.
구간별로 정의된 함수의 도함수 문제를 도함수의 좌극한, 우극한으로 풀 때
(1)과 같은 함수를 제외시키기 위해 제 책에는 다음과 같은
조건을 달았습니다.
‘함수 f(x)가 x < a일 때 f(x) = g(x), x ≥ a일 때 f(x) = h(x)로 정의되고,
g'(x), h'(x)가 존재하면서 둘 다 연속함수라면 함수 f(x)의 x=a에서의 좌미분계수, 우미분계수는 각각 g'(a), h'(a)가 된다.
그리고 g(a) = h(a), g'(a) = h'(a)이면 함수 f(x)는 x=a에서 미분가능하다.’
그러면 (1)의 함수는 g’(x)가 x=0에서 불연속이기 때문에 이 조건에 어긋나서
좌미분계수가 g’(a)가 된다고 할 수 없게 되는 것이죠.
물론 6평 30번 문제는 조건을 만족시키구요.
맞습니다. 저도 미적분 1에서는 대충 가능하다라고 알려주고 넘어가죠^^;
좋은 의견 감사합니다.