3월 모의고사 대비 수학 실전 모의고사 배포 (자작) (22 문항)
2025학년도 대학수학능력시험 3월 모의평가 문제지.pdf
2025학년도 대학수학능력시험 3월 모의평가 답지.pdf
안녕하세요. 원 점입니다. 약 한 달 동안 준비했던 2025 3월 모의고사 대비 실전 모의고사를 배포하고자 합니다.
팀이 아닌 모두 혼자 제작 및 검토한 문항으로, 15번과 21번은 불가피하게 사전에 공유했던 문제를 사용했습니다.
하지만 이외의 문제는 모두 새롭게 만든 문제임을 알려드립니다. 오류가 있는 경우 알려주시면 감사하겠습니다. :)
2025학년도 수능을 친 06년생으로써, 교육과정평가원에서 출제한 6월, 9월, 수능 수학 문제지의 공통 문항의 난이도는
6월, 수능, 9월 순서라고 생각합니다. 07년생 학생 여러분이 이와 비슷한 난이도를 경험할 수 있도록, 모든 문제지를
참고하여 최대한 수능에 가까운 난이도를 구상하기 위해서 노력하였습니다. 교육과정평가원에서 만든 문제지를
참고하며 만들다 보니 문제가 비슷한 느낌이 들 수 있습니다. 하지만 푸시면 다른 느낌을 받을 수 있다고 생각합니다.
제가 생각하는 2025 수능 수학은 "그리 어렵진 않았으나, 실수할 수 있는 부분이 많았다."입니다.
이러한 제 생각을 바탕으로 실전 모의고사를 제작했음을 알려드립니다.
아래는 주요 문항에 대한 코멘트가 있습니다. 문제를 풀어보시고 보시는 것을 권장합니다.
[5지선다형]
9월과 수능에서 출제되었던 로그의 연산 문제인데, 약간 아쉬워서 조금 귀찮아 보기에 만들었습니다.
계산을 해도 되지만, 두 수 중 한 개의 수가 1이면 합과 곱의 차는 1이 된다는 점을 안다면 쉽게 넘어갈 수 있습니다.
9월과 수능에서 출제된 정적분의 계산 문제입니다. 모의고사에서는 단순 계산으로 출제되었습니다.
하지만, 그와 다르게 이차 함수의 특징을 이용하여 푸는 문제로 만들어 보았습니다. 계산을 해도 해결 가능합니다.
수능에서 출제된 삼각함수 문제입니다. a와 b가 자연수이므로, 그 점을 이용해 b의 값을 먼저 구합니다.
그리고 주기를 이용해 a의 값을 구하면 해결할 수 있습니다.
9월과 수능에서 출제된 속도 문제입니다. 쉽게 출제되었어서, 똑같이 쉽게 출제했습니다.
적분하고 인수 분해 하시면 쉽게 해결 가능합니다.
9월과 수능에서 출제된 수열 문제는 모두 새로운 수열을 정의했지만, 이 문제는 등차수열의 틀을 갖추도록 했습니다.
an의 일반항을 구하고 (나)의 특수 조건을 바탕으로 bn을 추론하면 해결 가능합니다.
6월, 9월과 수능에서 출제된 함수의 넓이 문제입니다. 9월 문제와 비슷한 느낌이 있습니다.
하지만, 조금 다르게 이차 함수의 특징을 이용하는 문제를 만들어 보았습니다. 한 번의 정적분으로 해결 가능합니다.
수능에서 출제된 도형 문제입니다. 수능에서 계산을 어느 정도 요구했었다는 제 기억을 바탕으로 만들었습니다.
사인 법칙과 코사인 법칙 각각 2번 이용하면 해결이 가능합니다.
6월, 9월과 수능에서 출제된 함수 추론 문제입니다. 수능과 비슷하게 함수의 개형을 찾는 문제로 만들었습니다.
실수 k의 범위를 나누어 조건에 맞는 함수를 추론하면 해결할 수 있습니다.
[단답형]
6월, 9월, 수능과 다르게 연속 단원에서 19번을 출제해 보았습니다. 문제의 난이도는 6월과 비슷하게 구상했습니다.
f(6)=6이라는 점을 이용해 f(x)를 구하고 x=5에서의 극한값과 함숫값이 같다는 점을 이용하면 해결 가능합니다.
수능에서 출제된 지수, 로그의 활용 문제입니다. 수능과 마찬가지로 계산이 조금 있는 문제로 만들어 보았습니다.
계산만 하면 풀 수 있지만, 원점을 이용하여 원점을 지나고 기울기가 직선 AB의 기울기와 같은 일차 함수를 구합니다.
그리고 점 A 또는 점 B와 그 직선 사이의 거리를 구하면 조금이나마 계산을 줄이고 해결 가능합니다.
6월, 9월과 수능에 꾸준히 출제되었던 함수 추론 문제입니다. 6월과 수능처럼 계산이 최대한 적도록 노력했습니다.
그 결과 계산을 하지 않고도 해결 가능한 문제를 사용하게 되었습니다.
ㄴ명제가 언뜻 보기에는 계산으로 풀어야 하는 것처럼 보이지만, 대우를 이용하면 계산 없이 쉽게 해결 가능합니다.
-> 함수 f(x)가 실수 전체의 집합에서 증가하지 않으면, 함수 g(x)도 실수 전체의 집합에서 증가하지 않는다.
6월, 9월과 수능에서 꾸준히 출제되었던 수열 문제입니다. 모든 수열 문제가 헷갈리게 출제된 점을 반영했습니다.
위 식이 중근을 가지는 경우와 그렇지 않은 경우를 바탕으로 하여 추론하면 해결 가능합니다.
의도적으로 역추론을 하기 싫어지도록 a6을 분수로 제공했습니다. a1부터 차근차근 추론 해보시기 바랍니다.
조금 있으면 07년생 여러분의 수험 생활이 시작됩니다.
무슨 말을 하기보다는, 이런 식으로 실전 모의고사를 제공하며 공부를 돕는 것이 가장 큰 응원이라고 생각했습니다.
항상 응원하겠습니다! 화이팅입니다. :)
또한, 재수생분들도 응원합니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
봇치더락 그 밴드 도입부 해보고 싶음
-
군대 갔다 온 후 아주 아주 싫어하게 됐다 시급 1000원 노예
-
패스는 몰래하는거라 6월에 살려합니다
-
고 1, 고2 모고가 정말 의미없다는 건 알지만 그때까진 설렁설렁해도 고정 1이...
-
난왜441이냐 3
좀거리를둘필요가
-
누가 이렇게 들어오는거임?? 267명이나 ㄷㄷ
-
걍 추하게 얀대 신학과 가서 복전 기모딩 해야겠노 ㅌㅌ
-
오르비랑 서서히 거리두는 중
-
기하와벡터 미적분2 14
아는 사람 없어요? 물리학1이 아니라 물리1이었는데
-
누가 더 국어 잘함 6평 9평 수능 모두 백분위 96 vs 6평 2 9평 2 수능 100점
-
런하겠습니다 0
캐치미이프유캔
-
ㅇㅇ
-
의욕을 잃어버림 12
뭔가 열심히 하고싶은데 고1까지는 열정적으로 쳐놀다가 고2-고3은 공부만 했음 이제...
-
사탐런해서 사문 처음 해보는데 자연현상 사회현상이 문제 풀때마다 좀 억까 같은게...
-
이거진짜에요? 16
수시 반수는 걍 포기해야되나
-
시대는 왜 하필 4
상징이 부엉이지
-
혹시 무슨 앱 통해서 알수있을까요?? 등급을 알고싶은데 예를 들어...
-
공대자연대생들은 1
대학붙고 할거없으면 프리드버그 선형대수학 공부하세요 이거 잘하면 대학수학 날먹가능
-
3수여도 실제 나이는 재수 뭐 그런... 나도 빠른이었다면
-
수시로 걍 자기 등급대 대학 얌전히 가는게 맏아 편입을 하던지
-
방학동안 김민정 단일비 들었는데 강민철 새기분 나왔다해서 들어보려고 하는데 강기분...
-
원래 따로 연고상경 1차추합부터 총추합수 정리를 하려했는데 9
그전에 이미 문의주신분들이 다 따로 연락을 주셔가지고 딱히 그렇게 할 필요가...
-
몰래가면됨
-
국어 공부법 0
글읽기
-
걍 수면제 먹었다 15
빨리 현생 탈출해야지
-
커트만 하심? 아님 따로 펌도 하시나요?
-
국어 공부법 1
국어 ㄹㅈㄷ 노베상태에서 강기분 다 듣고나니 이제 눈이좀 떠지는 느낌이 드는데...
-
나오라고
-
매개변수 미분이랑 비슷한거같은데 실제로 문제 풀때 많이 쓰이나요? 막 합성함수...
-
아진짜과탐런해야되나 16
다시 화학경제로 돌아가야되는건가 으으..
-
본인 08 정시파이터인데 짜피 현역으로 대학 못가서 통사통과 공부하려고 하는데 수특좀 빨리 나왔으면
-
걍 지금까지 내왔던거랑 ㅈㄴ 다르던데 6,9평이랑도 개 다르고
-
부엉이바위로가자 2
우울해하지마라
-
담요단 남친? 꿍실이? 장발장? 생지 모태(22,프랑스)
-
뒤지게 천천히 마시면 안취함
-
ㅈㄴ 쉽게 나올듯 꼭 사탐런 본격적으로 이렇게 많아지면 다들 어려울거라 예상하는...
-
제 아랫긓 답변좀 해주실 수 있으신가요?
-
흠흠 괴롭네
-
메쟈의 고의 인설의 이감성인가요?
-
재수생 개념인강 0
현재 공부하고 있는 진도랑 최근 인강이랑 2~3주 차이나는데 그냥 2~3주 늦게...
-
오답노트 쓰는게 너무너무 싫어서 한 번도 안 써봤는데 이제 고2 올라가면서 탐구랑...
-
응응
-
719.2가 예비40이라는데 여기 보통 예비 얼마나 돎?
-
이런말하면 욕먹는데 이말 외에는 설명이 안됨
-
대학생들의 등록금 부담을 덜어주는 국가장학금 2차 신청이 시작되었습니다....
-
순대렐라가 깔아줘서 다들 저 정도는 쉽게 밟으실수있죠?
-
개강 전까지 할만한 생산적인일 추천좀요..1학년때 따기 좋은 자격증이라던지? 알바...
-
작년엔 멘탈이 나가면 하루가 그냥 날아갔는데 오늘은 어찌어찌 수습하고 다시 정상궤도로 돌림
정말 감사합니다 잘 풀게요
감사합니다 (_ _)
저도 한번 풀어봐야겠어요
좋은 자료 감사합니다
풀어주셔서 감사합니다 :)
한번 풀어봤는데 문제퀄이 상당했어요
개인적으로 10번,15번,19번 같은 문제가 진짜 좋았던 것 같아요.
진짜 잘 풀어봤고 다음에도 좋은 문제 내주시길 기대할게요