[수학칼럼] 부정적분에서의 극값
안녕하세요 저능부엉이입니다
오늘은 부정적분 파트에 대한 칼럼으로 찾아왔습니다
오늘 다뤄볼 주제는 부정적분에서의 극값입니다
부정적분에서 극값이라는 워딩이 나온다면
여러분이 해야할 행위는 99.99% 미분입니다
그럴때 우리는 다음과 같이 행동해야 합니다
1. 미분하기 (미분할 수 없다면 미분할 수 있게 만들자)
2. 극소,극대,극값은 도함수의 부호변화 유심히 관찰
예시 문항을 통해 설명하자면
230620 입니다
먼저 극값에 관한 워딩이 나온다면 공통영역에서는
필연적으로 미분을 할 수 밖에 없다는 것을 명심하세요
하지만 미적 선택자가 아니면 이대로 미분하기가
어려워 보입니다. 그렇다면 미분가능하게 만듭시다
미분이 이렇게 됐습니다
그렇면"g'(x) 의 부호가 1과 4에서 음에서 양으로 바뀐다"
이사실을 사용해야 겠습니다(극솟값이기 때문에)
|f(x+1)|-|f(x)|라는 함수를 그리기는 힘드니
|f(x)|에서 x좌표가 1차이나며 함수값이 같아지는 순간을
생각해봅시다
근데 지점이 총 3군대 나오는군요
하지만 우리에게 중요한것은 극솟값입니다
부호가 -에서 +으로 가는 순간이죠
따라서 |f(x+1)|가 |f(x)|보다 커지는 순간입니다
그렇기에 그림과 같이 x=1과 x=4인점을 찾을 수 있습니다
이후 대칭축이 3이고 f(1)=-f(2)인것을 이용해
계산을 끝내면 바로 답이 나옵니다
231112입니다
먼저 x=2에서 최솟값 0을 지닙답니다
따라서 2에서 극솟값이겠고 미분할 수 밖에 없습니다
우리는 그렇기에 두 가지 식을 얻을 수 있습니다
먼저 1번을 사용해 문제에서 주어진대로 그림을 그리면
이런식으로 나옵니다
(극솟값이기에 부호변화가 2에서 음-양으로 바뀌는게
포인트입니다)
이후 2번식을 사용하면
이런식으로 마무리되고 1/2에서 4까지 적분이기에
간단하게 정답 -1/2가 나옵니다
220620입니다
극값이라는 워딩이 나왔습니다
일단 미분해봅시다
다음과 같이 미분되었습니다
우리는 g'(x)의 부호변화가 단 한번 일어나도록
a값을 만들어야 합니다
일단 f(t)^4은 항상 0이상이기에 2번함수는
오직 a에서만 부호변화가 일어납니다
따라서 적분한 함수와 앞의 1번함수가 공통된 근을 가져서
그 근에서 x축과 접하도록 만들어야 할 것입니다
2번함수가 근을 갖는 지점은 x=a에서만
따라서 가능한 a값은 3,5 뿐입니다
오늘 칼럼의 핵심을 요약하자면
부정적분에서 극값내용이 나올경우 무조건 미분
극값은 도함수의 부호변화가 핵심
이 되겠습니다
사실 어느정도 수학을 하는 사람에게는 매우 쉬운 내용이기도 그럼에도 의외로 극값에서 도함수의 부호변화를 바로 연결 짓지 못하는 사람이 존재하다고 생각해서
행동강령적인 느낌으로 칼럼을 적어 봤습니다
들어주셔서 감사하고 좋아요는 제게 큰힘이 됩니다
다음에도 좋은 칼럼으로 돌아오겠습니다
[수학칼럼] 등차수열 정복하기 -
[수학칼럼] 정보의 용도 파악 -
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대학교 위치 0
대학교 위치가 금천구 시흥동이면?
-
투:예상보단 컷이 높지만 그럴만한 적절한 난이도 사탐:천국...
-
중대식으로 746.50인데 추합 가능성 있을까요? 몇점 정도에서 끊기는게 정배인가요..?
-
흐흐 3시간만 하면 퇴근이당
-
서울대공대 생각있는데 거친다면 생기부면접인가요? 아니면 제시문면접인가요?
-
특히 국어에서 몇번이 더 정답으로 많이고를것같냐고 그런거말고 두번째로...
-
ㄱㄱ
-
작수 5였고 재수하는데 뭘로 하면 좋을까요 작년엔 김승리 들엇는데 올핸 메가만 끊어서 ㅠ
-
ㅈㄱㄴ
-
우석약 빠질게요 5
제주수의 제발 붙여주세요~~추합되면 우석약 빠집니다!
-
6평 해보고 사문돌릴지도
-
잊음을 논함 3셋인데 정작 잊음을 논함은 쉬웠음
-
사회문화 같은 허접이랑은 비교도 안되게 강력해요오오..
-
중량스쿼트랑 레그프레스 너무 힘들어요…
-
고3때 나... 5
포켓몬스터 블랙,블랙2,소울실버 클리어 응원하는 축구팀(2개) 경기 다 챙겨보기...
-
국어- 강기본 3권+ 마더텅 문학독서 일부(2주간 하루 총 2,3지문정도 할겁니다!...
-
240915, 241115 ㄱㄴㄷㄹ 이거 선지 4줄로 늘려서 단순 ㄱㄴㄷㄹ OX를...
-
과목 선택하고, 문제 번호들 입력하면 문제 이미지 가져와서 알아서 시험지로 ㅋㅋ
-
아쉽
-
법적으로 로스쿨 못가고 경찰만 할 수 있었으면 입결 어느정도였을거 같음? 중경외시급일거 같은데
-
SK하이닉스, 구성원에 '새출발 격려금' 자사주 30주 지급(종합) 5
지난달 총 1천500% 성과급에 이어 격려금 추가 지급 노사 "위로와 미래 협력을...
-
이미지 사은품 티셔츠
-
조건 다 줬자나 현장감 때문인듯
-
내년 수능도 올해 수능의 난이도와 준하는 정도로 출제할 수 있도록 노력하겠습니다.라고요?? 1
음...국어는 음...
-
국어 지구 꼴은 게 진짜 너무 슬프네 강점이었는데
-
내가 잘 풀 수있나 궁금함
-
12월달정도에 입소한 사람들은 오늘부터 3~4일정도간 긴 휴가가 있다고 했던 것...
-
수1 쎈발점 끝냈고 수2 쎈발점이랑 수1 수분감 병행 하면 되나요? 아님 수2를 다...
-
총 12분의 검토단이 모집 완료되었습니다. 보다 '좋은 모의고사'를 위해...
-
윤 측 "헌재 증인신문 절차 부당…심각한 방어권 제한" 1
[서울=뉴시스]이소헌 기자 = 윤석열 대통령 대리인단이 헌법재판소에서 진행되는...
-
적백맞아보고싶다 2
작수다풀고적백인줄알았음 ㅠㅠ
-
질문3. 의대, 의대 증원이 많이 이루어졌기 때문에 개인적으로는 상당히 적정한...
-
적백 11
올수능 말고 수학 1컷 80초반정도로 잡히는 시험에서는 적백이랑 96이랑 차이가...
-
392까진 안 가겠지 ㅋㅋㅋ
-
중국집은 최근에 가서 거기 말고
-
이젠 조건 걍 다 주고 야! 구해봐 다줬잖아 이러는 식
-
확실히 더 편한가요?
-
어떤 시험이든 실모든 뭐든간에 딱 1컷 나옴 뭔가 쉬운시험지다 싶으면 앞에 2,3점...
-
진동이라니 좀 야하네요
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
발상이 아닌 교과 개념 기초한 풀이
-
캬 이걸 불러주시네
-
난이도 상관없이 80점대에서 와리치는 성향이라 항상 더프나 이감보면 목표보다 성적이...
-
혁신신약학과?? 약사 면허 못받는다는데 이거 신종 사기야??
-
존나미끄럽네 그래도 패딩때문에 살았다 멍드는 선에서 끝날듯
-
1월달에 31일동안 하루평균 4시간 정도 공부했고요 2월달엔 하루 8~10시간 정도...
-
이거도 당시에 욕 먹었지만 그 와중에도 참신한 회차가 많이 있었죠 예를들어 1709...
-
님들 수학 기출 몇번이 무슨문제인지 다 알아요?? 17
170921 220628 241120 이런 식으로 던지면 다 이해함?
![](https://s3.orbi.kr/data/emoticons/orcon/024.png)
선개추 후감상왜 재업함?
중간에 인수분해 하나 잘못한거 있었음...
그래서 수정후 재업함
부정적분보단 긍정미분이죠
와 이사람 오랜만이네
지금쯤 뭐하고있을까
담달에 전역하심
![](https://s3.orbi.kr/data/emoticons/oribi_animated/015.gif)
정적분 정의 함수는 미분하고 대입한다흔히들 가르치지만 정말 중요한 태도
칼럼 잘 읽고 있어요
뻘글쓰는건 역시 다른 사람인거죠? ㅋㅋ
![](https://s3.orbi.kr/data/emoticons/oribi_animated/005.gif)
잘보고갑니다~![](https://s3.orbi.kr/data/emoticons/almeng/024.png)
미적분 내용 못 써서 0으로 바꾸어서 쓰는 거그래프간 부등호 대소 판별 유익 추 goat
![](https://s3.orbi.kr/data/emoticons/oribi_animated/014.gif)
goat이거 삭제 ㄴㄴ
첫?번째문제 아예 부정적분을 F(x)라 두고 미분해도 됩니당
근데 누가 봐도 고능부엉이신데 닉넴 좀 바꾸세요 ㅠㅠ
231112 에서 극솟값을 2에서 가지는 게 아니고 0에서 가지나요?
앗...오타
![](https://s3.orbi.kr/data/emoticons/oribi_animated/014.gif)
칼럼 너무 잘 봤습니다!!231112번을 저렇게 걍 풀어도 되는군요 ㄷㄷ
누구세요???!
세로드립임?
삼각방정식도 다뤄주시면 감사하겠습니다
담에 한번 노력해볼께요
이게 내가 아는 부엉이지