미적 질문 (간단하게 정리했음)
g(x)가 아무런 조건도 없는 상황인데
2x+npi 꼴이라 할 수 있나요?
g(0) = npi 가 아닌 상황이면
꼭 g'(0) =2 일 필요는 없는 거 아닌가요??
미적 너무 오랜만이라 헷갈리네요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
연대질문받음 48
1학년따리라 복전은 모름.. 그래도 송도는 빠삭함
-
시대 재종 질문 2
94 98 1 99 100 인데 높반 가능한가요??(언미물지) 그리고 높반이면...
-
술 못먹고 술먹으면 울어 속상해 ㅠ 할줄아든게 없어
-
두각 일요일 오후 201호 반인데 나만 분위기 개 답답하냐.오늘 션티 쌤이 어케든...
-
여러분들 개인한테 하고 싶었던 말 한마디씩 해드릴게요 점 찍고 튀어봐요! 。◕‿◕。
-
여자라고 할때요
-
생명 n제 5
생명 n제 ㅊㅊ좀
-
ㅆㅂ차은우 성대는 알았는데 나캠든?이사람은 성솦이네 2
3특인가 어케한거임? 아이돌하면서
-
정상적인 글 쓰다가 갑자기 예수왜 안믿냐 이러노
-
후회는없다..
-
전 솔직히 안 그리움 학창시절이 초중고 내내 워낙 암울한 편이었어서... 근데 이...
-
나는 비록 여친이 없지만! 나는 비록 친구도 없지만! 나는 비록 사회성이 없지만!...
-
탐구는 나발이고 0
지금 수학이 개둏댛다는 것을 깨달음 시바ㅏㅏㅏㅏㅏㅏㅏㅏㅏ
-
평가원하고
-
연대는 붙었고 서울대는 붙을거 같아요 서울대가면 무조건 복전할 예정입니다 (아마도...
-
특수할 때로 찍는 것 24
이건 걍 지녀서 나쁠게 없다 도 아니고 걍 지녀야만 하는 태도 라고 생각함 다만...
-
올해의 목표는 0
위버멘쉬가 되는것이다 잘 봐라 코리안 니체가 될것이다 으하하
-
이번에 이뤄 보겠습니다. (살짝 일기장이라고 생각 하면 편합니다..)
-
다들 잘자요~ 4
내일 헬스하고 알바가야해서 자야됨 굿나잇~
-
이유가 뭔가요?
-
이제 고등학생 올라갑니당. 국어 공부 자체를 학원으로 계속 하고 있는데요, 국어에...
-
수 1 2 어느정도 완성한후 미적분 들어가는게 맞나요?
-
예를 들면 생2 생윤 쌉어먹을 수 있는 과목이면 이걸로 메디컬 가능?
-
고대 교과 0
추합 1명도 안돌까요
-
안녕하세요. 고3 수험생들은 이제 수험 공부 시작하시느냐 바쁘시고 엔수생분들은...
-
평소에 누나도 그렇고 명절에 친척 형 누나들도 그렇고 다들 전문대에 간 사람들인데...
-
사문<---이친구 변별력이 어케 생기는 거임 ㄹㅇ 15
지2>지1>생1>물1>화1>>>물2중 물2보다도 개념양 적어 그럼 물2처럼 문제가...
-
개강추
-
찝찝하게시리.
-
너네라면 어디갈래
-
잘그렸죠 6
반박 못받음
-
웹소설은 안되나 ㄹㅇ 웹툰 끊고 웹소설 볼까걍
-
과외생이 어제 생기부오늘까지 다써야된다고 도와달라해서 5시간쓰고 자율,진로 생기부...
-
수학 자작 문제 만드는 분 보면 멋지시던데 그런 분들은 자작문제 어떻게 만드시는건가요?
-
지2는 어떰요? 10
공부해본 사람 후기좀
-
서울대 0
40분뒤면 D-10... 후
-
담당자 퇴근했으려나 어디에 신고해야될지 감이안옴
-
2025 수능만 인정되나요?? 학교 다니다 보려고하는데 2025만 되는거같지 왜,,
-
수면제 한 알의 여유 14
자고일어나면 명절 끝나있으면 좋겠네
-
국어가 뽑기라는 사실을 6평쯤에 깨닫고 빠르게 유기함 7
최소한만하고 수탐에 몰빵 영어도 깔짝 성공적 ㅎㅎ
-
1시간 째 이모양.. 안 쓰고 있는데..
-
(가) 과조건 아닌가 시픈데
-
경제가 없잖아
-
시대 재종 접수할 때 성적표 이런 형식으로 올렸는데 문제가 되나요?? 성적표 좀 잘리게 올려서,,,
-
스킬에 집착하는 경향이 있음 근데 실력이 늘수록 스킬에 대한 의존도가 떨어지고 결국...
-
하루하루 뿌듯하고 알차게 사는 기쁨? 행복? 이게 너무 좋음을 최근에 느낌..결과도...
-
어쩌다 저리 변해버리신건지.. 진짜로 신시장 개척하려고 떠난건가
-
추천좀 표점먹고싶어용
-
자기 동창 중에서 잘풀린것으로 따지면 다섯손가락 안에 꼽히는거겠죠?
사실 저도 그 생각햇는데
머지 싶음 지금
오...과외 준비하시는건가요?
양변 미분해보세요
아닌가
맞내요 이거
g'(0)=0이면 g(x)가 왜 상수인지 알려주실수잇으신가요
g'(0)=0인데
그 외에는 미분계수가 0이 아니라면요??
아 헷갈리네..
충분조건이지 필요조건은 아닌거같은데,,,
아니네 맞네,,,씹
아니네 아닌데
원본 문제 보여주실 수 있나요?
오른쪽항이 0부터 2X까지라 N파이인거 아닌가요'
g(0)이 N파이가 아니면 g(x)-g(0)=2x라고 해도 좌변 우변이 같다는 보장이 없어요
사인제곱을 0부터 2X까지 적분한거랑 0.5파이부터 2X까지 적분한게 다르자나요
g가 1차함수라는 보장이 없어서
시작점이 달라도 얼마든지 적분 결과는 같게 만들 수 있긴 해요
위끝 아래끝 기준으로 좌변은 미지수, 우변은 상수가 나오게 두면 g가 2x+C 꼴로 나와야 함이 보이고, 우변의 한쪽 끝이 0으로 고정이니까 좌변도 f의 절편이 경계여야 함 즉 +n*pi
인 것 같네요
오류 맞는 것 같네요
함수 h(x)=1/2(x-sinx*cosx)에 대해 h'(x)=sin^2(x)니까
h(g(x))-h(g(0)) = h(2x)-h(0)이 성립하고, 이때 h(x)는 일대일대응이니 역함수가 존재해서 임의의 g(0)에 대해 g(x)=h-1(h(2x)+h(g(0)))과 같이 g(x)를 정의할 수 있어요
물론 g(0)=npi가 아니면 g'(0)=0이고요
사진은 g(0)=pi/2인 케이스에서 g(x)의 그래프에요
생각해보니 원본 문제에서는 g'(x)가 나타나는데, 이런 식으로 정의되면 특정 점에서 약간 x^1/3 그래프랑 비슷한 형식으로 미분계수가 발산하는 문제가 있긴 하네요
그렇다고 미분가능이라 명시된 건 아니라서, 여러모로 애매하긴 해요
검토가 안된 문제같네여...
선생님 답변 정말 감사합니다 ㅠㅠ
뭔가 이상한건 느꼈는데
현우진 쌤 교재라서 해설이 무조건 맞을 줄 알았네요
감사합니다!
잘 읽었습니다.
의문이 드는 것은
제가 애초에 질문한 이유가 g(0)=0이 아닐 경우에도 성립하는지 궁금해서 였는데,
선생님의 증명에서는
f(g(x))=0 이면 f(2x)=0 인것을 이용하셨네요.
물론 맞는 말이긴 하지만,
g’(x)=0이어도 f(2x)=0이 됩니다.
그렇다면 f(g(x))=0과 f(2x)=0은 필요충분조건이 될 수 없지 않나요?
g'(x)f(g(x))=2f(2x)이므로, f(g(x))=0이면 f(2x)=0이지만, f(2x)=0이면, f(g(x))=0일 수도 있고, g'(x)=0일 수도 있기에, 필자는 f(g(x))=0의 해와 f(2x)=0의 해가 일치한다는 걸 증명함. f(g(x))=0→f(2x)=0과 f(2x)=0→f(g(x))=0을 각각 증명해 f(g(x))=0⇔f(2x)=0을 도출한 게 아니라, f(g(x))=0→f(2x)=0와 추가적인 증명을 이용해 f(g(x))=0의 해와 f(2x)=0의 해를 구했고, 두 해가 일치했기에 f(g(x))=0⇔f(2x)=0이 도출된 거임