[칼럼] 문제 풀이의 방향성에 대한 조언
안녕하세요. 김지헌T입니다.
문제를 풀 때 어떤 방향성으로 접근할지 결정하는 것은 해결의 첫걸음이자 가장 중요한 단계라고 할 수 있습니다.
이번 칼럼에서는 230622을 예시로 들어 이 문제의 3가지 해설 방법을 소개하고,
이를 토대로 수학 문제를 풀 때 방향성에 대해 조언을 드리고자 합니다.
1. 유리화 접근 :
일반적으로 유리화는 무한대-무한대의 형태에서 주로 했었다는 사실을 많은 학생들이 알고 있을테죠.
위의 극한식에서는 -를 기준으로 분자에서 왼쪽항과 오른쪽항을 분리하여 따로 표현하면 무한대-무한대가 됩니다.
하지만 이때 조심할점은 g(t)가 0이라면 각각의 항들이 0/0 형태가 되면서 0/0 - 0/0이 되는 반면,
g(t)가 0이 아닐때 무한대-무한대 형태가 된다는 점이겠죠!
따라서 g(t)가 0일 때, 아닐 때에 대해서 문제의 기준점이 생김을 토대로 직관적인 풀이가 가능합니다.
이 문제는 극한값 자체가 아닌 극한값의 존재성만 물어봤으니 조건만 읽자마자 g(x)=0의 실근을 알려줬구나
라고 생각하면서 접근하면 좋겠지요.
2. 미분계수 해석 : 이 접근법의 근거는 극한식이 미분계수의 정의와 매우 비슷한 형태라는 점입니다.
x → -3일 때의 극한을 구하는 것은 x = -3 근처에서의 함수의 변화율을 분석하는 것과 유사할 수 있습니다.
3. 변수 분리 접근: 이 방법의 근거는 극한식에 x와 t 두 변수가 동시에 등장한다는 점입니다.
g(x)와 g(t)가 별도로 나타나며, 이들의 관계를 분석할 필요가 있습니다.
또한, t값에 따라 극한의 존재 여부가 달라진다는 조건이 주어져 있어, x와 t를 분리하여 생각할 필요성이 있죠.
이 접근법은 복잡한 식에서 변수 간의 관계를 명확히 하는 데 유용합니다.
각 접근 방식은 극한식을 어떻게 바라보는지에 따라 나뉘게 됩니다.
1. 유리화 접근은 극한식의 형태(무한대-무한대 또는 0/0의 형태)에,
2. 미분계수 해석은 순간변화율으로 해석가능함에,
3. 변수 분리 접근은 두 변수 간의 관계에 주목합니다.
이 세 가지 접근법은 모두 주어진 극한식에서 학생들이 어떤 정보에 가중치를 뒀냐에 따라
충분히 합리적인 방법이 될 수 있다고 생각합니다.
물론 이 문제의 경우 1. 유리화 접근이 주어진 극한식을 대하는 가장 좋은 해석이라 생각합니다.
하지만, 유사한 형태의 다른 문제에서 2. 미분계수 해석 또는 3. 변수 분리 접근이 쓰일 수 있겠지요.
사실 230622도 유리화로 접근하지 못하고 미분계수로 해석을 했더라도 충분히 풀 수 있는 문제였습니다.
여러분, 풀이가 합리적으로 시작만 했다면 생각보다 방향성은 중요하지 않습니다.
공부를 할 때는 여러가지 풀이를 배우며 안목을 늘려두는 것이 중요하겠지만
시험을 칠 때는 '이게 가장 괜찮은 길인가?' 의심하며 되돌이표를 찍지 않아도 괜찮습니다.
모로가도 서울만 가면 되니까요.
여러분에게 항상 도움이 되고 싶습니다.
감사합니다.
김지헌 수학 핏모의고사 (지헌모) 2025 판매중입니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1컷~98진동인데 백분위 99이상 고정받고싶으면 대체 어케해야하는걸까
-
혹한기 끝나고 13
행정병이 됩니다 그래서 뿌렸습니다
-
흑 ㅜㅜ
-
인문계 기준 국어표점×1.5 수학 표점 영어 2등급 95 탐구 변표합×1.03 맞나요...?
-
지금 내신으로 어디까지 교과 찔러볼 수 있으려나요?? 1
이제 3학년 올라갑니다. 고대 화생공이 목표인데 고대 기준 1.3 중반 정도...
-
자살버튼 13
눌러볼까
-
개재미없음 ㄹㅇ 카밀 키아나 다이애나같이 준내 들어가야 재밌음 특히 친구들이랑 같이...
-
운명론이 좀 많네요 서로 자기가 얼마나 못났는지 강조하고 비관에 안주하는 느낌이랄까...
-
옯태기 왔어 3
한 달 후면 낫겠지 뭐
-
사장님 좋아보이시네 잠실 근처 어딘가로 오시면 제가 만든 피자 드실 수 있습니다
-
포스트잇에 아이민 적어놓고 오면 되겠죠?
-
시빌점 수 상/하를 다 끝내놓고 현재 시발점 대수를 공부중입니다. OT에서...
-
후잉
-
간헐적 단식중임 1
삼십분째 단식중인데 힘드네요
-
네이버 카페랑 디시 중간인 느낌 디시는 싫은데 네이버 카페 갈 곳이 마땅치 않으면...
-
칼바람 랭크도 잇엇으면..
-
추천 받아요 ‘아 그때 입학 전에 이거 해볼 걸…‘하는 것들…? 과외랑 알바는 지금...
-
좀 많이 빡세네요;; 그래도 나름 수학 잘하는 줄 알았는데
-
수학질문 6
구간별로 정의된 함수를 합성할때 ex)f(x+2) 이런식이면 구간까지 x+2 넣어서...
-
ㅈㄱㄴ 잠 안 올 거 같아서
-
얼버기 0
어두컴컴한걸 보니까 오전 6시 기상이 맞네요
-
어제 학교 축제때 노래불렀더니 연락받았다네...
-
오늘깔았어요
-
뱃지 달렸나? 3
히히힣
-
수시로 고려대를 간게 공부를 잘한거라고 할 수 있을까요?
-
현역 66(언매) 71 3 78 95 반수 76(화작) 76 2 90 96 수학은...
-
예비군 6년내내굿
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][거주 정보] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
님들이면어디감
-
2년 기른 머리 자르기... 어깨넘어까지 오는데 하....
-
저희동네도 2개 천원이네요...
-
안녕하세요 이제 중3올라가는 10년생입니다 내신따서 대학가고 싶은데 여고가 좋을지...
-
그냥 갑자기 궁금해서
-
한급간만 올리고 싶었음
-
둘다 합격하면 어디로 가야 할까요 집은 대전이라 둘다 자취해야 할거 같아요 등록금은...
-
대방어 먹고싶다 4
얼마전에 진짜 두툼하고 기름 자글거리는 놈 먹었는데 너무 맛있었어
-
지느러미 회를 샀다 14
이제 거지야
-
행복해질수읶어요
-
고대는 공부 못하는 애 입학시키려고 교과우수 만들었나 8
이정도면 내신‘도’ 잘하는 애 뽑는 게 아니라 그냥 빵꾸파티 열어서 수능 못본애...
-
그냥 쉴까 6시간 했는데 근데 과외 숙제는 해야겠고
-
그러면 나처럼 현생이 ㅈ대 ㅠㅠ
-
:D 3
;D
-
오다가 엎은건지 쳐먹은건지는 몰라도 너무 찜찜함 괜히 햄버거도 의심스럽
-
현역 68 85 2 70 47 재수 86 70 3 81 91 평소엔 못 해도 수학이...
선생님 노베들을 위한 칼럼도 부탁드려요
글 내용에 너무 동감합니다.
100분이 생각보다 긴 시간이라 뭐 효율적인 풀이를 딱히 찾지 않더라도 논리성만 정확하다면 100분 내에 30문제를 풀어내는데에 전혀 문제가 없는데 말이지요.. 오히려 시간이 부족하거나 문제를 풀어내지 못하는 경우는 어떤 문제를 논리성은 정확하지만 너무 비효율적으로 풀어서가 아닌 자기 논리성에 대한 확신이 없어서 오래 걸리는 경우 / 문제의 논리의 실마리를 하나라도 잡지 못하는 경우더라고요
생각보다 최선의 풀이방향성에 대한 고민은 중요한 것 같지 않습니다 많이 풀다보면 효율적으로 나아갈 수 있고요
와 근데 짝수 홀수로 접근하는건 대박 좋은 풀이 같네요. 좋은 칼럼 감사합니다