칼럼)함수의 불연속을 보여주는 세련된 방법
바로 "평균변화율과 극한을 이용하여 미분계수처럼 보이게 만들기"....입니다
이건 제가 스스로 문제를 만들다가 올해 1월 초 즈음에 생각해낸 방법인데요.
혹시 다른 사설 N제나 모의고사에 이미 나왔었어도 이상하지 않다고 생각합니다.
더군다나 앞으로 평가원도 써먹을 가능성이 있는 소재라고 생각합니다.
제가 1월달 우진 공모에 보내봤다가 광탈한 문항인데요....한번 같이 봅시다.
네. (가) 조건을 한 번 잘 살펴볼까요?
생긴 건 미분계수처럼 생겼는데 뭔가 좀 이상합니다.
그렇죠. f(x)-f(-1)이어야 하는데 빼기가 아니라 더하기네요.
f(3)과 f'(3)이 0이고 그 값이랑 같다고 하는 거 보니
미분 계수의 꼬라지를 하고 있는 (가)조건의 극한식은
분자도 0으로 수렴하고 있으니, 분자 역시 0으로 수렴해야 함을 알 수 있습니다.
따라서 x->-1+일 때 f(x)의 극한값은 함숫값과 부호만 다르다는 것을 알 수 있겠죠.
그리고 그(가) 조건의 극한식의 값은 0이라고 했으니
절댓값 f(x)가 -1일 때 미분계수가 0이 됨을 알 수 있겠네요.
(다)에서 f(x)는 오직 x=-1에서만 불연속한다고 했고, 여기서 극값을 가진다고 했으므로
f(x)의 개형은 총 두 가지의 그림으로 그려질 수 있습니다.
그것이 목적이 아닌지라....궁금하시면 혼자서 풀어보시면 되겠습니다.
이 문제는 오류가 있기 때문에 푸시다가 "음?"이라는 소리가 나올 수도 있지만
그럼에도 불구하고 답을 내시기엔 그래도 충분할 겁니다.
이렇듯 극한값과 함수값이 언제나 같지 않다는 사실과,
특별한 상황 속에서 평균변화율의 극한값과 미분계수 라는 개념을 통해,
함수의 불연속을 아름다운 형태의 조건으로 제시할 수 있답니다.
어떤가요?
어쩌면 수능 문제 푸는데 쓸모가 없을 수도 있지만
그래도 조금 사설틱(?)한 문제를 통해 우리가 알고 있다고 자부하던 개념에 대해서
정말 제대로 이해했는지에 대해 성찰해 볼 수 있는 기회였을 거에요!
다음번에도 기회가 있다면 종종 생각해볼 거리들을 들고 와 수학칼럼을 가볍게 써보도록 하겠습니다.
유익한 도움이 되었다면 좋아요와 팔로우 한 번씩 누르고 가 주세요!
제겐 힘이 됩니다!!
P.S)
지오지브라 다루는게 서툴러서 그런지 그림이 조금 보기 불편하더라도 양해 바랍니다 히히
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수능 3주전 강대K 26회차 14번
-
ㅇㅈ 14
눈 ㅇㅈ
-
간단한 미적분 문제 12
짤이 너무 산화되서 제가 다시 타이핑해서 만들었음
-
아직 못 먹어봄
-
고맙습니다 4
아이스티, 쮸솔, 무한입시님 께 보내드렸읍니다 인데 팔취 누구야
-
휴릅합니다 8
3모랑 3덮치고 올게요 공스타 내일부턴 진짜진짜진짜 올릴게요 팔로우해주세요 dpluskiawin25
-
대치동 카르텔 척결을 제대로했음 대치동에서 이제 국어는 뭐 비문학 리트가 중요하다...
-
사실 그정돈 아님
-
킬러 문항 배제 2
하기 전이 수학은 더 쉬웠던거 같음 삼도극 없어진 이후로 28번이 더 까다로워진거...
-
하.
-
사탐만점 = 과탐1컷 이라고 봐도됨? 만점백분위 99이상일때
-
니없어도 어차피 잘먹고 잘삼
-
스크랩만 하고 정작 지원을 안 함
-
선착순 팔로우해주는 3명 1000덕
-
화력좀보자
-
한걸음 뒤에서 보면 그냥 개소리같은데..
-
인증절대안함 2
도용한번 당해보면..
-
ㄹㅈㄷㄱㅁ<-이거 오히려 못생긴놈들한테 하는말임 사실 12
사실 레전드괴물임
-
ㅇㅈ 2
고윤정 보고가라
-
교과외임 ㅅㅂ 석열이는 그런 걸 킬러라고 했어야지 ㅉㅉ
-
님들도 제 얼굴 보면 기분 안 좋으실듯
-
휴
-
자괴감 든다 ㄹㅇ.....
-
새내기 시간표 ㅁㅌㅊ? 10
-
빨리 인증해라 0
빨리
-
렌즈뺌 0
이제잘수있어세상에
-
하 4
머리 ㅈㄴ 앛프다 두통 개쩡ㅁ 왜이러지…0
-
난 클린유저야 8
여기빼곤 욕 거의 안해
-
인정 1
해주세요
-
약간 수열문제 비슷한 느낌인듯? 그래서 더 어려운거같고 비율관계같은 스킬 전혀 안쓰이고
-
레어 사. 6
흑화할께
-
대학수학능력시험에 관심을 가져 주셔서 감사드립니다.
-
왜계심?
-
개인적인 의견 7
오르비가 순간 스레드로 바뀌어 있었다.
-
?
-
키 184 ㅇㅈ 12
신검은 183.5 최근에 낮에 병원가서 잰키 184.0
-
현질 100만원 넘게함
-
교육청:비가오나 눈이오나 바람이부나 정상등교하세요~~ 병무청: 이 정도면 멀쩡한데?...
-
어떻게해야할지 알려주세요 ㅜㅜ
-
오르비의 순기능 6
잘자ㅇ ㅛ
-
후..
-
연애메타 몇번 돌았던거 구경하다보니까 궁금해짐 옯만추 목격한 옯창 나와주세요,,,,
-
嘆き 0
自由は次々死んでいく 受験生の声が風になる 浮き立つ群れのアエない男...
-
이왜진
-
가져가지 말라면 안가져가고 약간 비호감행동 같으면 한두번 물고 놔줌
-
아
-
잘하는게 없어요 4
(진짜임)
캬 오르비 대표 고트 기하러 약연님이....
|f(-4)| = 49
|f(-1)| = 32
|f(5)| = 32
여기서 f(-4) f(-1) f(5) 모두 양수여야 답이 나옴
따라서 f(-4) + f(-1) + f(5) = 113
악마랑 거래하심? 모든 수능 수학 문제는 다 맞추시는 것 같네....