삼각함수 인사이트
쓸만한 삼각함수 인식 방법 하나를 알려드리겠습니다.
앞으로 삼각함수는 이렇게 인식하세요.
문제입니다. (출처: 2023 고2 12월 모의고사)
결국 저 코사인 값이
이 사이 값을 가져야겠죠.
그럼 우선 코사인 함수를 그립니다.
cos(3x+b) 말고 cos x요.
여기에다가 아래 상수함수 두 개도 추가해줄게요.
x값은 "pi/2 부터 a까지" 바뀝니다.
그러면 3x+b는 "3pi/2 +b부터 3a+b까지" 변화합니다.
이때 x의 변화가 아니라 3x+b의 변화에 집중할 겁니다.
이렇게 되는거죠.
b와 a 값이 모두 나올겁니다.
정리해보면,
y=cos(3x+b) 를 그린 채로 x값을 변화시키는 게 아니라,
y=cos t를 그리고, t자리를 3x+b의 변화로 읽어내는 겁니다.
비유를 하자면,
이 그림처럼 'x축' 대신 '(3x+b)축' 으로 바뀐 셈입니다.
3x+b 전체를 하나의 문자로 인식하는거죠.
그 덕에 함수가 y=cos(3x+b)에서 y=cos x로 간단해지는 것이구요.
조금 더 인사이트가 있는 분이라면,
이건 삼각함수 뿐만 아니라 모든 합성함수에 해당되는 얘기라는 걸 알아채실 겁니다.
이 과정을 한 번 더 시각화 한 것이 n축이죠.
다음과 같이 삼각함수에 이차함수가 합성되어 있으면
n축을 쓰든 뭘 하든 대부분 합성함수로 잘 인식을 합니다.
그런데 이렇게 일차함수가 들어가있을 땐 합성함수로 못 보고 당황하는 분들도 있더라구요.
이를 꼭 평행이동으로만 읽어낼 필요는 없습니다. 얘도 근본적으론 합성된 거에요.
삼각함수의 이런 인식에 대해 더 알고 싶은 분은
제가 예전에 썼던 아래 글을 참고해보세요.
(제목 누르면 해당 칼럼으로 넘어갑니다.)
이번 글은 여기까지입니다.
다음에도 좋은 글로 찾아뵙겠습니다.
#무민
0 XDK (+21,010)
-
10,000
-
10
-
10,000
-
1,000
-
에휴
-
대단하다 진짜
-
기대해
-
이름은 푸루고 초6때부터 같이 잠. 이름은 참고로 남동생이 지어줌. 내가 루푸라고...
-
본인 홍대병임? 8
재수할때 국어-최인호 수학-강윤구 영어-곽동령 탐-최적 이거 홍대병인가요
-
저 기대하고잇엇는데… 주간지 그걸로할라고햇는데
-
닥 유니임??
-
라이엇 장난하냐 9
롤 접고 싶게 만드네 반사 이지랄 트페 골카 던지면 지가 스턴 처맞고 베이가 궁...
-
계약학과인거만 바로보고 가는건데 개병신인거냐
-
할무니 집에 2주간 있어야 하는데 3일동안 똥이 안나와... 미치겠다ㅜㅜ
-
고2때 항상 문학에서 1틀해서 만점 못받았고 독서는 쭉 다맞았는데 문학 위주로 강사...
-
자야지 7
응..
-
중대 기공다는데 0
숭대 정보보호로 반수하는거 개병신이냐?? lg 유플러스 계약인데
-
같은 학교, 같은 과 오르비언 선생님이랑 옵스타도 맞팔중임..
-
어깨 삼각근 쪽에 꽃문신 하나 할까 싶은데 좀 그럴까요..? 의대생입니다
-
최적쌤 성격이 어떠신가요?
-
메가스터디 사문 2
메가패스 있으면 걍 사문은 윤성훈T 들으면 될까요 실모나 N제는 다른 분들거 좀 섞고
-
ㅇㅈ 6
-
짜파게티 4
-
이번에 과탐에서 사탐런 예정인 사람인데어준규 쌤 어때요? 지식밥차에서는 말이 귀에 박히던데
-
하... 헤어진 지는 한 두 달 정도 됐습니다... 진짜 전 그 친구한테 엄청 잘...
-
오늘한거 0
화2 주스 풀기.......(이게 끝이라고.....p)
-
다군이고 210명뽑고 계속 6칸 뒤쪽이었음..
-
올해 사문 7
올해 사문 전망이 어떤가요 한지랑 사문 중에 고민중인데
-
힙합추천 2
오이글리-1에서8 이거 ㄹㅇ ㅈ됨
-
@orbihaku
-
오르비를 0
심심해서 일년만에 다시 하니깐 꽤 재밌다
-
추억여행 떡밥은 어떨까요?
-
한번만 봐주세요.. 11
앞으로 이런 사진 다신 안 올릴게요 제가 판단을 잘못했어요 미안합니다 살려주세요...
-
욕 많이 먹어서 2
오래 살거같아요..
-
옯서운 사실 10
내가 벌점 0이다
본문애 있는 문제의 답은 41입니다
답이 안 나와서 계속 풀어봤네요 ㅋㅋ 답은 14입니다!
와 이런 오타를 ㅋㅋㅋㅋㅋ
14 맞습니다 ㅋㅋㅋㅋㅋ
속이 뻥..
n축으로 인식해도 되고,
본문처럼 x축 대신 삼각함수 축을 사용해도 되죠.
그런데 증가와 감소를 반복하는 함수의 경우에는 전자 방식이 낫습니다.
후자처럼 인식해봤자 결국 n축과 동일해지기도 하구요.
와..ㅁㅊ
장재원 단위원도 저런 느낌 ㅇㅇ
잘하는 분들은 많이들 이렇게 보시더라구요
ㅆㅅㅌㅊ입니다..
이게 ㄹㅇ 맞음뇨
예전부터 느끼는 거지만
교단에 뜻이 없다면 아까울 정도의 설명력이십니다
[읽기 전]
어차피 y=cos(x)를 확대, 축소하고 평행이동한 그래프이니 본질적으로 y=cos(x)의 그래프와 같다.
만약 주어진 구간의 길이가 너무 크면 실수 전체의 집합에서 f(x)는 최댓값 2, 최솟값 -2를 갖는 상황이니 모순이 발생한다. a가 적당히 ㅠ/2에 가까운 값일 것!
함수 f(x)가 함숫값 1, -루트3을 갖는 상황은 함수 cos(x)가 함숫값 1/2, -루트(3)/2을 갖는 상황과 본질적으로 일치한다.
따라서 방정식 cos(x)=1/2과 방정식 cos(x)=-루트(3)/2의 실근을 조사해보자.
두 가지 경우의 수가 발생한다. 하나는 주어진 구간이 구간 [0, 2ㅠ]에서 정의된 함수 y=cos(x) 입장에서 구간 [ㅠ/3, ㅠ-ㅠ/6]에 대응되는 것이고 다른 하나는 구간 [ㅠ+ㅠ/6, 2ㅠ-ㅠ/3]에 대응되는 것이다.
따라서 x=ㅠ/2일 때의 함수 f(x)를 바라보는 것이 y=ㅠ/3 or y=ㅠ+ㅠ/6일 때의 함수 2cos(y)를 바라보는 것이라 생각하고 계산해주면 후자일 때는 상황을 만족하는 ㅠ 이하의 음이 아닌 실수 b값이 존재하지 않고 전자일 때 b=5ㅠ/6로 결정된다.
이에 따라 x=a일 때 함수 f(x)가 y=ㅠ-ㅠ/6일 때 함수 2cos(y)가 위치해야할 곳이 되는 셈이므로 a=2ㅠ/3
따라서 정답은 5ㅠ^2/9에서 14
[읽은 후]
삼차함수에 일차함수가 합성된 것으로 바라보자는 것~~ 정확히 일치해서 다행이네요
막 몇배 확대축소 평행이동 대칭이동 쌩쇼하기보다 이게 훨씬 편함 합성관점이..
오
무민님 혹시 도형 관련 칼럼도 써주실 수 있을까요...? 뭔가 일관된 도형풀이 체계를 잡으려고 하는데 어렵네요ㅜㅜ
항상 도움 많이 받고 있어요 감사합니다
도형도 써보겠습니다 ㅎㅎ
거리곱 관련 칼럼도 가능하신가영