[초고난도] 고1 12월 학평 대비 '모노모노' 수학 모의고사 배포
모노모노 모의고사 .pdf
모노모노 모의고사 정답표.pdf
안녕하세요. 모노모노입니다.
12월에 보는 11월 학평이 내일... 아니 오늘입니다.
그런데 생각보다 고1 모의고사를 대비한 실전 모의고사가 없더라구요...?
그래서 제가 직접 만들어 봤습니다.
고1 11월(12월) 학평의 범위는 고등학교 수학 V. '함수' 까지입니다.
해당 범위 내에서 충실하게 출제했습니다.
...물론 그냥 출제하면 이전 교육청 기출에 비해서 아무런 메리트가 없겠죠.
이를 위해, 시험장에서 그 어떤 문제가 튀어나오더라도 대비할 수 있도록 초고난도로 출제했습니다.
최근 수능식 준킬러 난사 +예전 수능식 극강의 킬러를 조합으로 매우 변별력 있게 만들었습니다.
실제 교육청 표본이면 1컷이 70점대 초반으로 잡힐 것으로 예상됩니다.
***아래에는 문제 맛보기가 있습니다. 스포를 원치 않으시면 스킵해 주세요!***
(쉬운 3점)
(평이한 3점)
(쉬운 4점)
(준킬러)
(어려운 3점)
대부분의 문제는 주요 교육청/평가원/내신기출 문항을 강하게 변형하거나, 함정을 파서 출제했지만
제가 직접 만든 순수창작 문제도 몇 가지 있습니다.
100점 맞기는 불가능한 수준으로 출제했으니만큼, 너무 한 문제에 연연하지 말고 '이런 문제도 나올수 있겠구나~' 하는 마음으로 즐겨주시면 감사하겠습니다.
오타/오류 제보나 질문은 언제나 환영입니다!
오늘 학평 모두 화이팅입니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아는 누나가 아일릿 12
띠따띠따띠따라또따 이 노래 듣더니 이것도 노래냐? 이럼 걍 너무 웃겼음..
-
술한잔 할래요 5
한잔해~
-
다들 뭐하고 사시려나... 모르겠네
-
대치러셀 바자관 0
어느 건물임..? 별관? 본관?
-
수험생이 되어서 당장의 입시 결과를 기대하지 못하고 내년을 기약하는 것이 스스로...
-
만약 6
건동홍을 다 붙었다 그럼 어디 갈 거임?
-
귀 기울여 듣지 않고 달리 보면 그만인 것을
-
얜 어떰?? 5
ㅇㅇ
-
총내신 4.09 권장이수과목 다 들었는데 c임뇨.. 걍 진로 과목 다 c… 등급은...
-
중경외시 이상으로 미적 기하 가산점 주거나 지원 불가능한 곳 있나용? 서울대랑...
-
짝사랑했던 애가 11
하던 게임을 따라서 하기 시작한게 재작년 5월말인데 지금은 좋아하지도 않고 게임을...
-
용산 가서 식물 살 남붕이 구합니다 코덱스의 세계에 입문시켜드리겠음
-
난 왜 인기 없음?
-
여기 애들이 보는 여자 눈이 높은건지 커뮤 마다 다른게 신기하네 아 근데 거긴 찐...
-
방학때 모의고사 0
방학때 1주일에 한번씩 모고를 풀려고 하는데 작년 고3 3월 모고부터 일주일씩...
-
안어울림 크아악
-
헐 천둥 1
소리 개크다 와우..
-
문법 필요없고 해석 위주로 듣고 싶어요
-
일찍자야하는데 0
뇌가 도파민에 절여져서 자기를 거부함
-
이감 언매n제 전형태 언매n제 배기범 일당백 개정되나요?
-
팔로워 한 명 줄었으면 저일 가능성 있음뇨 맞팔한 사람은 팔취안함뇨
-
야식추천점 8
-
군수 질문 1
올해 6월에 육군으로 입대 예정입니다.수능 성적은 화작 미적 영어 생 지 7 3 3...
-
고려대에 가고 싶다. 내 위로 없었으면 좋겠다.
-
어릴 땐 키가 큰 편이었나
-
서터레스...풀기에...제격입니다... 같이...즐겨보시지요... 제가...
-
축하해
-
아직 1/3밖에 안들어왔네 ;;
-
건국대 어떰? 2
학교 생활 ㅇㅇ 상권은 말할 것도 없고 캠퍼스도 예쁘던데
-
맞팔구합니다 2
제가 팔로우가 적은 관계로 맞팔 해드립니다
-
일단은 농담곰으로 바꿨어영
-
커뮤니티에서 말 개같이 했을때 “너 국어 몇등급이냐 ㅋㅋ진짜 심각하네“ 아.
-
이런 감성 다른 커뮤에선 못 느낌
-
방 정리했어요 3
-
중안부길어보임 피곤하게살아야겟슴
-
맞팔구 1
저지금 이 글만쓰고 잘건데 팔해주시면 내일 일어나서 맞팔할게요 다들 굿밤
-
일본 가서 살고싶다 11
1.내가 씹덕임 2.내가 좋아하는 가수가 내한을 안 옴 3.물가가 저렴함..비교적
-
(반팔이랑 팬티만 입으며)
-
점공계산기 2
실제 등수보다 안 좋게 나오는 게 위쪽라인인가요 아래쪽라인인가요..?
-
아니 머야 6
사라졌던 암흑표본이 아까 다시 들어왔었는데 다시 사라짐
-
언제쯤 잊힐까..
-
1년이 넘어서 최근에 오르비에 돌아왔지만 아직도 예전에 재수 끝나고나서 친구들은...
-
태어나기 전으로 되돌려줘
-
롤 발로는 스트레스 받아서 못해먹겠는데 메이플 ㄱㅊ? 물론 주변에는 비밀로 ㅋㅋ
-
아니 사실 4살만…
-
연애는 어짜히 못하니까 알빠가 아닌데 극한의 자만추라 밥약,과팅,미팅같은 대학문화가...
이건 가형한테 먹여도 1컷 75 만표 170 over 나올듯 ㅋㅋ
10번 AD의 중점이 E가 맞나요?
tan theta의 범위를 보면 f(x)의 정의역도 잘못 설정된것 같아요
ㄷㄷ 죄송합니다... 점을 잘못 설정했네요
교육청 70초반 꽤 흔한데 한 60초나올듯..
23번 (1+zi) 곱에서 (1-zi)곱으로 배꾸어야 되지 않나요?
x^2023 -1=(x-1)(x^2022 + x2021 +...+1)에서
n=2023이 되려면 x^2022 + x2021 +...+1에 1을 집어넣어야 할듯요
그리고 이정도면 드무아부르 안쓰고는 z1, z2, ..., z2022중 겹치는게 없는지 증명할 수 없으니 '서로 다른'이라는 조건 추가해주면 좋을것 같아요
18번에 밑의 a>0인 모든 경우와 (a,b,c)가 되면 (-a, -b, c)도 되는걸 감안하면 16개가 정답 아닌가요?
12개 정답이면 a,b,c가 실수가 아닌 정수라고 해야합니다