[JYJ칼럼] 7월30번 이른바 "연속정사영"에 대하여
[JYJ칼럼] 7월30번 이른바 연속정사영에 대하여.pdf
학생들의 질문을 받다보면
"꼭 필요한 기본적인 전제를 공유하지 않은 상태"로
"본인의 특수한 하나의 방법은 왜 틀렸는가" 에 대한 설명을 요구받을 때가 있습니다.
이른바 "연속정사영"은 그런 경우 중에 하나입니다.
혹 평소 궁금해 하던 부분이었다면 참고해 보세요^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
친구 A씨께서 렙틸리언의 후손이자 일루미나티의 수장인 로스차일드 가문의 제1후계자가...
-
그알에서 1. 기절시켜서 강까지 끌고 내려가는거랑 2. 강가에서 밀어서 빠뜨리는 것...
-
만약 친구 A씨가 고 손정민 씨를 살해했다고 밝혀지면 22수능 응시 안함 ㅇㅇ
-
마녀사냥으로 유명인 부친 돌아가신게 몇년이나 됐다고 4
과오는 반복되네요 결과가 나올때까진 중립을 박아야하는데 사건에 대해 잘 알지도...
-
나도 A씨가 어떤 식으로든 연관될 것으로 의심은 가는데 (밝혀진 바 없으나) 죽인...
-
조용히 퇴직좀 할라 했더니만 갑자기 있지도 않은 20대 조카가 생겨서 조카가 벌인...
-
친구 A씨인가 그사람 의심할수는 있는데 같은 기자가 기사썼다고 버닝썬 연루된...
-
퍼온글이에요 실종자 부모님 블로그 글...
-
이렇게 몸소 오셨네요
-
날씨는 좋네요
-
이제 알바 끝났네요 ㅎㅎ 사진 보며 힐링합니다.
-
난 심지어 학교후배들이 다 알고있다 ㅅㅂ
-
추합 봐주시겠어요? 11
서강대 수학 예비 3 중앙대 다군 942.76 맘접고 삼수하는게맞겠죠?
-
1차에서 3명 2차에서 1명이라 이제 5번인데..왤케...
-
어디로 가야할지 앞이 안보이네요. 라인좀 잡아주세요
-
화학1 안어려웠나요? 전 5문제 찍고도 시간이 엄청나게 부족했는데 왜 등급컷은...
좋은 글이네요.
수학을 잘하는 학생과 못하는 학생의 차이를 결정짓는 것은 '이게 정말 타당한가'에 대해 얼마 만큼의 스탠스를 취할수 있느냐.
답을 내는데 만족하면 결코 안정적 1등급이 될 수 없음.
인강이나 주위 선생님 혹은 교재가 중요한 이유는 이 차이를 보완해준다는 점.
앞으로도 이런 글 많이 부탁드립니다.
ps. 출제해주신 모의고사 잘 풀었습니다.
이중정사영이라니... 듣도보도 못한 논리인데요,
저걸 사용하는 애들은 어디서 저걸 배운걸까요???
설마 그냥 직관적으로 쓴걸까요
직관이 엄청나거나 직관이 거의 없거나 둘중 하나일듯
직관이 ㅈ나 없습니다 지송합니다 ㅠㅠ
너무 마음쓰지 마세요.^^ 생각보다 많은 학생들이 실제로 그렇게 답을 찾아 보았구요. 그게 안되는 이유 또한 마땅히 해명되지 않았을 테니까요. 이번 기회에 이면각의 정의와 법선벡터를 이용한 방법에 조금 더 집중해주시면 됩니다. 화이팅!!
실제로 문제풀면서 이중정사영 쓰고 이게 왜 구하고자 하는 넓이랑 같은지 증명하고 있었어요ㅋㅋ 위에서 쓰신바와 같이 수직이니까 성립된다는 것도 시간 끝나기 전에 알아서 그냥 넘어갔는데 좀 고민해봐야겠습니다 감사합니다
직관이 ㅈㄴ없네요 죄송해요
배우고 갑니다
방향벡터로 풀었기에...
허 저런 방법이;;
저렇게 했다가 뭔가 아닌거 같아서 제대로 했었는데 답이 같길래 맞나?? 했는데 확실히 아니네요.
저번에 이걸로 푸는 방법제시해서 글올리신분이 제대로 설명안해주셔서 궁금했었는데..
감사합니다
장영진 선생님
작년 29번 해설 부탁드리면 안될까요??ㅜㅜ
선생님이시라면 정말 탁월하게 해설하실 것 같은데요
글을 통한 서술이 상당한 지면의 제약을 가져올테니 쪽지로 답변을 대신한 것으로 하겠습니다.^^ 화이팅~
저도쪽지로29번 답변좀받을수있을까요ㅠㅠ
아 29번해설 저도 한번 들어보고싶습니다,,,, 그 문제때문에 벡터쪽에 두려움이생겨서 그부분을 어떻게공부해야하나 하고 고민하고있어요ㅠㅠㅠ
코사안세타두개구한걸로 덧셈정리쓰는것도잘못된풀인가요?
1777129번 게시물이 그 내용인 듯 한데 이미 댓글들로 오류인 이유들이 대략 설명되어 있습니다.
결국 각들 사이의 덧셈,뺄셈으로 구해지려면 두 교선이 서로 평행해야만 하는데 7월 30번은 전혀 평행하지 않습니다. 그럼에도 정답과 같은 결과가 나온 것은 두 평면이 바닥과 이루는 각의 코사인값이 모두 1/root3 이기 때문에 생긴 진정한 우연입니다.
안녕하세요 선생님
저도 7평 30번을 풀었었는데 평면 MPQ와 ABCD가 이루는각을 A1
평면 DEG와 ABCD가 이루는각을 A2라고 했을때
cos세타 = cos(A1+A2) 라 두고 덧셈정리로 푸는건 오류가 있는 풀이인가요?
평면 MPQ와 ABCD의 교선, 평면 DEG와 ABCD의 교선이 평행할 때만 덧셈정리로 풀 수 있습니다. 이경우엔 두 교션이 서로 평행하지 않으므로 덧셈정리로 풀면 안되며, 위위의 댓글에 언급했듯이 정답과 같은 값이 나오는 것은 두 평면이 바닥과 이루는 각의 코사인값이 모두 1/root3 이기 때문에 생긴 우연입니다.
대박 이거이거
오우 ~~ 대박~!! ㅎ 저도 수업때 그대로 얘기해야겠네요 ^^ 감사함니다~ ㅎㅎ - soowoo
큭... soowoo쌤 여기까지 출연해 주시고.. ㅋㅋ
선생님, 그렇다면 이 문제에서는 연속정사영을 이용해도 만약 '평면이 수직일 때 성립한다는 사실을 미리 알고서' 사용했다면 논리적인 하자가 없는 것인가요?