확률의 정의를 아세요?
알텍 확률듣고있는 이과생인데요.
빡샘께서 숙제를 내주시고 여러사람이랑 의견을 나눠라 해서 오르비에 글 올립니다.
A,B,C 세사람과 크기,모양이 같은 사탕이 10개가 있다. A가 사탕 5개를 가질 확률은?
일단 2H5 / 3H10 은 아닙니다. 여러분은 이 문제를어떻게 푸시겠습니까??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버기 2
-
아직 난 안졸린데ㅜ
-
그래도 높진 않네
-
닉네임안바꾼지 4
1년반넘엇나
-
26 마더텅 독서 문제집 풀고 있는데요 너무 오래된 기출문제까지 풀어야 할까요?...
-
두자리×두자리는 5
둘의 합이 짝수면 (n-1)×(n+1)로 하면 편함 전에 환율계산하다가 깨우쳤었음
-
재종다니긴 쫌 그렇겟지 아쉽당
-
고3때 반에서 아는 커여운 애가 오르비 해서 수능끝나고 오르비 가입했었는데 이게 옯만추인거네
-
옯 또 궁금한거 6
글도 안썼고 덕코도 700 이렇고 뱃지센츄 없고 맞팔도없고 댓글에서도 자주 못본...
-
개인 신기록 달생 14
키보드 배치바꾸니 진짜 기록 증진된다
-
기차지나간당 8
부지런행
-
못일어날거같은데
-
라이트 훅으로 눕힘
-
사람자체가 귀여운 사람이 있는데 (재능충) 부엉이는 그냥 사람자체가 귀여움
-
https://namu.wiki/w/%EC%B9%B4%EC%98%A4%EC%8A%A4...
-
얇은 사(紗) 하이얀 고깔은 고이 접어서 나빌레라. 파르라니 깎은 머리 박사(薄紗)...
-
이걸로 억울한 일이 안 생기는 일이 있나
-
저기에서만활동하는사람들잇던데
-
흰쌀밥 먹을바에 차라리 컵라면 스프안붓고 물만부어서 삶아먹음
-
해안선이 9
프랙탈 구조를 가지는거 아시나요
-
설정에서 봐도 안보여 핑프같나? 미안ㅜ.ㅜ
-
아 깼다 7
잔지 얼마 됬다고
-
노래 추천 11
https://youtu.be/LKZyp2cSAy4?si=N6KGVcLSTzhzx9W...
-
앞으로 노추 안함 11
조회수 처참하네,,
-
나 이미지 한번 써주셈 49
아직도 오르비 상주하는 소수정예멤버들에게 부탁해요
-
코골이 진짜심한사람이랑 20
결혼해야되면 할수잇음? 님이 잠귀밝다고했을때 사랑해서 결혼하고싶은사람이 코를 겁나골아 가능?
-
최근에 자주보고 제일많이 연락한순으로 위에있는거야? 맨위에있는게 제일많이 들여다보고...
-
수악 논문만 11
1500개 올린 사람도 잇음
-
이성볼때 말고도 같은성별 연예인이라거나 친구중에 앵간치생겻다 생각하는사람들 보면 다 눈썹털이 많음
-
다들왜안자 13
외않좌
-
잠온다 15
형 자러갈게
-
옯 궁금한거잇음 11
왜 여기서는 정치얘기 잘 안함? 보통 커뮤는 어쩌다한번씩 정치메타열려서 물어뜯고...
-
이건 다들 알려나 13
2보다 큰 짝수는 두 소수의 합으로 표현됨을 증명하여라
-
그때가 여름이었어서 엄마랑 형 내가 거실에서 창문 열고 잘려고 했었음 그런데 밖에서...
-
이사람은또누구임 0
??
-
팔로워가 늘어났어
-
전 문제 답 2
홀수인 완전수는 난제다.잇는지 없는지도 모른다
-
그냥.. 새벽에 조용히 보고 있으나 좋네요.ㅎ 뜬금 없지만 다들 좋은 오늘 되세요..ㅎ
-
생각이깊은분이이상형이에요..
-
사랑할 수 있는 사람이 좋고 사려깊은 사람이 좋아 근데 그런 사람들은 나 안좋아할듯
-
난 듬직한 남자가 좋아 18
그래서 군대에서 찾아볼려구
-
오늘의 문제 6
자신을 제외한 양의 약수의 합이 자기 자신이 되는 수를 완전수라 한다.완전수의...
-
사촌동생 7
3^20의 일의자리를 맞추는 문제가 잇엇음 사촌동생(형)을 과외해주고 잇엇는데 난...
-
57 3
소수
-
댕댕이처럼 폭 안기면 좋겠다
-
어리한데 귀여우면 됨
-
ㅇㅇ
-
21 30중엔 꽤 괜찬은게 잇엇음 갈수록 쉬워졋지만..
-
자꾸 뭘 먹음 0
돼지되겟다 피티도 안간지 좀 됐는데ㅜㅜ
저라면 일단 식으로 구사하진 못하겠으나..
A가 1개를 가졌을때 B와 C가 9개를 나눠갖는 경우의수
A가 2개일때 ~
이렇게하다보면 규칙을 찾을수있지않을까요..?
전체수도 나올거같구요
아니면 전체수를구하고 A가 5개만 찾던지요..
꼭 확률단원에서 배우는 기호를 사용해서 풀어야되나요??
A가 안가질때 2H10
A가 1개~ 2H9 , 2개~ 2H8 •••
저도 이렇게 생각했는데 맞게 한건진 몰게씀..
이렇게하면 답은 1/11로 나오는거같은데
저라면 A가 5개 가졌다고 정해놓고
나머지 BC가 5개 나눠갖는 경우의수/전체 경우의수
할거같아요..아닌가ㅜㅜ
A,B,C,D(D는 사탕이 누구에게도 안가는경우)에서 사탕 10개를 A,B,C,D에 분배하는 경우의 수를 구하고
또 A에 5개를 먼저주고 B,C,D에 5개를 분배하는 경우의 수를 구해서 확률을 구하는게 아닐까요... 꼭 사탕 10개를 다 A,B,C에 주라는 법이 없다고 생각하여 이렇게 풀어봤습니다.
이게 맞는말 아닐까 싶어요
A B C한테 꼭 다 줘야 한다는 법이 없으니까요.
A.B.C가 사탕을 가질 확률이 각각 1/3로 동일합니다. 사탕10개를 다 다른 사탕이라고 놓고 생각하는게 확률에서 중요합니다. 확률의 세상에서는 저 사탕을 다 다르다고 인정해야하는거죠. 그러면 A가 가질 사탕을 a. B가 사탕을 b. C가 가질 사탕을 c라고 하면 aaaaa는 그대로 놓고 B랑 C끼리 사탕을 나눠가질 경우를 bbbbb.bbbbc.bbbcc.bbccc.bcccc.ccccc.저렇게 나눠서 생각해주면 되겠네요. 각각을 첫번째를 예로 들면 aaaaabbbbb를 일렬배열할 경우의수 그렇게 두번째 세번째 다 구한거를 더해서. 거기다 1/(3^10) 을 곱해주면 될 것 같아요 제생각에는.
A.B.C가 사탕을 가질 확률이 각각 1/3로 동일합니다. 사탕10개를 다 다른 사탕이라고 놓고 생각하는게 확률에서 중요합니다. 확률의 세상에서는 저 사탕을 다 다르다고 인정해야하는거죠. 그러면 A가 가질 사탕을 a. B가 사탕을 b. C가 가질 사탕을 c라고 하면 aaaaa는 그대로 놓고 B랑 C끼리 사탕을 나눠가질 경우를 bbbbb.bbbbc.bbbcc.bbccc.bcccc.ccccc.저렇게 나눠서 생각해주면 되겠네요. 각각을 첫번째를 예로 들면 aaaaabbbbb를 일렬배열할 경우의수 그렇게 두번째 세번째 다 구한거를 더해서. 거기다 1/(3^10) 을 곱해주면 될 것 같아요 제생각에는.
옛날에 비슷한 문제 풀어본 기억이 있는데..
윗분 말대로 확률에서는 문제에서 똑같은 사탕이라고 해도 다 다르게 봐야되죠.
그러니까 사탕 각각이 A,B,C 중 하나에 분배될 경우가 3가지이기 때문에 '분모에는 3의 열제곱'이 들어가고
분자에는 C가 5개를 가지고 나머지 5개가 A 또는 B에 분배되야 하기때문에 '분자에는 10C5 x 2의 오제곱' 이 될꺼에요
확률에서는 다 같은 정도로 기대되어 지는가!! 가 정말 중요 합니다
a,b,c,d,e,1,2,3,4,5, 라는 사탕이 있다고 합니다. 그다음에는 다 같은정도로 기대 되어 집니다.
따라서 각각 3명에게 10개를 나눠줄 확률 3의 10제곱 나누기 A 학생에게 5개를 줄 확률은 10개중에 5개를 뽑아서 주고 곱하기 각각 애들한테 5개를 나눠주면
10! x 2의 5제곱 나누기 3의 10제곱,5!5! 을 해줍니다 .그럼 됩니다.
한샘 확률 첨시작할때 이것땜에 애 많이먹엇죠 ㅜ
21/286 ??
아님말고..ㅋㅋ
전체 경우 수 : A+B+C<=10
해당 사건 경우 수 : B+C<=5
이렇게 생각했어요
표본공간구성하는 문제인거같네요 ㅠ,ㅠ 이런거 너무 어려운거같아서 힘드네용...
저는 표본공간을 구성하는 근원사건들이 결정되어지는 가능성이 다 동등해야 하니까 크기,모양이 같은 사탕 10개를 a1,a2,a3,a4,....,a10 이라고 쪼개고
이것이 A,B,C 에게 각각 다 대응될 경우가 a1이 3가지 a2도 3가지 a3도 3가지 ..... a10도 3가지 이니까 3^10 이 분모이고
그중 사탕 10개중에 5개는 A한테 줘야되니까 10C5 거기에 남은 사탕 5개를 B,C에게 주는 경우가 위에 생각한것과 마찬가지로 2^5 이므로
10C5 x 2^5 가 분자가 되니까 확률 = 10C5 x 2^5 / 3^10 이라고 풀었는데 ....
만약 진짜 경우의수 풀듯이 중복조합으로 풀어서 분모를 3H10 이라고 하는순간 표본공간의 근원사건 각각이 기대되어지는 정도가 다르길래 저렇게 풀었습니다 예를들면 (A,B,C) = (10,0,0) 과 (A,B,C) = (8,2,0) 은 다른 정도로 기대되어 지고있는 반면 3H10은 둘다 한가지 씩 세고있으므로 잘못된 표본공간구성이 된다고 생각해요 ( 실제로 (10,0,0) 은 1가지 (9,1,0)은 9가지 (8,2,0)은 45가지 가 되니까요 )
결과적으로는
표본공간에서 근원사건이 기대되어지는 정도를 같게 하는 주된 방법이 같은것들을 다르게 생각해서 경우의수를 세거나 확률을 계산하는 방법이라고 생각합니다
답이 뭘지 궁금한데 나중에 꼭 알려주시길 바래요 ㅋㅋㅋ
저도 한석원 쌤한테 배운지 얼마 안됬고..
풀어봣는데
10C5 X 2 의 5제곱 나누기 3의 10제곱 나오네요.
설명 정확한거 같아요.
이분 풀이가 정확합니다
이야 정확하시네요 ㅋㅋㅋ 표본공간을 구성하는 각 근원사건이 기대되는 정도가 경우마다 다르니까 이렇게 푸는 게 정석이죠