수학에서 개념공부란 어떤걸까
항상 말하는 수학에서의 개념공부란 대체 어떤걸까, 많은 사람이 강조하는 개념공부에 대해 알아볼게요.
우리가 수학시험에서 문제를 못 풀때, 혹은 시간이 부족하여 풀지 못할때 그 이유는 무엇일까, 쉬운 문제건 어려운 문제건 모든 문제는 풀이에 대한 단서를
갖고 있습니다. 문제집에서 단원을 구별하여 각 단원에 맞는 문제가 나오면 잘 푸는 학생이 모의고사로 나올 경우 잘 풀지 못하는 경우가 많죠, 이건 그 학생은 문제가 요구하는 풀이를 잘 읽어내지 못하기 때문입니다. 문제에 숨겨진 풀이에 대한 단서들을 읽어내서 필요한 교과 개념을 떠올리고, 그중 조건에 맞지 않는 풀이, 답을 구할 수는 있지만 과정에서 시간이 오래걸리거나, 실수 할 여지가 많은 풀이, 등을 제외하고 가장 적절한 풀이법을 떠올려서 풀 수 있는 능력이 바로 개념을 다진 후에 얻는 능력입니다. 문제집에서 단원을 구별한 상태로 출제된 문제를 잘 푸는 학생은, 문제가 요구하는 풀이를 생각할 필요가 없는 거죠. 단원명에서 풀이법을 얘기하니까요, 어떤 문제는 아예 유형별로 문제를 구분해 놓았기 때문에 더욱 이 부분을 고민할 필요가 없이, '아 이 문제는 고차식의 인수분해에서 인수정리를 이용하여 인수분해하는 문제구나'를 알게 되죠. 개념을 제대로 다진다면, 문제를 보고 인수분해를 해야하는데, 고차식이니 보통은 인수정리를 활용하여 인수분해 한다는 사실 을 개념공부를 통해 알고 있기 때문에 대입하여 식의 값이 0이 되게 하는 값을 찾는 것으로 문제풀이를 시작하게 됩니다.
결국 개념을 다진 상태란 무엇인가? - 문제에서 요구하는 교과개념을 떠올리고 실수 없이 풀어낼 수 있는 능력을 다지는 공부입니다. 한 문제에 대한 풀이법은 여러개가 나올 수 있고 1.그것들을 모두 떠올리기 그리고 2. 가장 적절한 풀이를 골라내는 능력을 갖춘 상태라 할 수 있습니다. 때문에 개념공부에 있어서 문제를 뺴놓고는 논할 수 없죠. 개념을 공부한다는 것은 교과내용을 모두 숙지하고, 이 내용에 맞는 기본문제들을 풀어보고 연결지어 수학개념에 익숙해지는 것이라 할 수 있습니다. 여러분이 개념서를 선택할 경우 주의깊게 보아야 하는 부분은 개념에 따른 문제들이 난이도와 유형의 다양성이 개념에 대해 충분히 숙지할 수 있는 지를 파악하여 선택해야 합니다.
개념공부를 할 때는 그저 개념설명을 읽고 문제풀고 안 풀리고 어려운 문제 체크하는 것이 아니라, 문제를 보면서 개념이 어떻게 적용되는 지를 계속 눈여겨 보면서 익숙해져야 합니다. 또한 한 단원이 끝나면 개념과, 그에 해당하는 문제를 1:1로 연결지어 개념이 문제속에서 드러나는 양상들을 외우시는 것이, 이후에 시험에서 새로운 유형의 탈을 쓰고 출제되는 문제들 속에서도 출제자가 깔아놓은 단서들을 캐치해 내는 능력을 키우는 데 도움이 됩니다.
이렇게 개념과 문제가 매우 끈끈히 연결되어서 한 개념을 떠올리면 관련 문제들이(가급적 기출문제들로) 떠오르는 수준에 이른다면 개념이 훌륭히 다져진 상태라고 볼 수 있습니다. 이후에 해야하는 공부는 이것들을 계속 반복하면서 더 빠르고 정확하게 문제 속 힌트들을 읽어내는 공부를 해야합니다. 이 경우 많이 활용하는 것이 기출문제죠
이건 수능 기출문제를 반복해서 풀어봄으로써 출제자들이 문제 속 힌트들을 숨겨놓는 방식과 개념을 물어보는 방식 등에 익숙해지기 위함입니다.
아직 개념을 다지고 있는 분들은 그저 개념설명 읽고 문제풀기 만을 반복하기 보단, 그 둘간에 연결과 문제속에서 개념을 물어보는 방식을 통해 이 개념은 문제에서 어떤식으로 출제되더라, 에 익숙해지는 공부를 하시면 개념이 잘 정리될 겁니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
차단한 회원의 글입니다.
-
갈드컵하실분 0
주제 아무거나 심심하다
-
저 사실 남자좋아해요 겠냐?
-
슬슬 나도 이상해지기는 했음 컨셉 끝내야만 하긴했음
-
비디디 화난거 처음봄 진심 개심각하긴했음 그나마 0.5인분이라도 한 탑을 제외하고는...
-
한창 옯창이던 23수능때는 글 리젠도 왕성하고 사람도 복작복작 거리고해도 서버...
-
그때 포기했으면 지금 덜 슬펐을까요.. 겁쟁이로 살기보단 나은 선택이었을까요
-
급성장염으로 잠시 입원.. 지금 깻다;;
-
하루 6천원으로 3끼 가능하겟음
-
모두넣작품이라고붛호
-
안될 걸 알아도 도전하고 시도해야하는거임
-
누가이기지 동강대의대가 동강동강 카니발쓰면 다 동강낼거같긴한데 4500명의...
-
이거 또 타커뮤니티에 퍼지는거아니노
-
정보) 현재 난리 난 N PAY 대란 요약 . jpg 0
https://sbz.kr/zdk1D
-
얼버잠 2
내일봐요..
-
진짜 팩트인건 0
딮기가 놓쳤다 (X) 딮기가 내놓은 매물이다 (O) 이건 정말 심각한 수준이라는거임
-
만족스럽군… T-59!!!
-
덧셈정리 쓰는시간이 4배넘게 걸렸다면 믿으시겠습니까
-
토스에 0
버크셔형 떴다 주식 ㅂㅂ
-
솔직히 저도 입시 안할때 어느정도인지 잘 몰랐음
-
슬슬 4
잘 때가 된 건가
-
미적분 수분감 0
원래 함수의 극한부터 스텝1도 어렵나요?? 수2랑 달리 잘 안풀리네요ㅠㅠ
-
코비드 나인틴은 왜 나의 대학생활을 앗아갔는가 - 어차피 친구 없잖아요 라는 말...
-
글리젠죽었네 1
나도자러가야지
-
ㅇㅇ
-
빡갤에서 외대 하루종일 까이네 거의 가천대 다음인데
-
시대기숙 os반 4
시대기숙 os 우선선발 (3합4)에 합격했는데 수학이 높2여도 os반 배정되겠죠?
-
프변완 1
냥이다 ㅋㅋ
-
여론이왤케씹창임
-
지 실명까고 국수영 333으로 고자전 붙은걸 자랑하고 다녔다고..?
-
시대 재종 4
시대 재종도 단과처럼 수업 들을때 자리 제비뽑기로 정하나요??
-
중솦 1차 추합 후 예비번호 83번 됬는데 합격 할수 있을까요.. 0
1차에 85명중 55명 밖에 안빠졌는데..
-
추억의 게임 0
포켓몬 pt 기라티나 튀어나와요 동물의숲 삼다수로 돌리던 추억...
-
추영우 영상 계속 보고 옴
-
제곧내입니다 사회성이 없는거같지는 않아요
-
하다가 잠깐 지운 거 제외하고 아예 안하시는분
-
과외하다보니 노베에게 정승제가 신이라는걸깨달았고 메가,대성처럼 1년치 한번에...
-
https://orbi.kr/00071928067 이거 풀어보실 기하 황좀 이분...
-
돈벌고싶음들어와 0
Tsll지금다박으면 한달뒤에 입찢어지게 웃고있을듯 본인은 23불에 980주박고 지금 행복게죽을라니께
-
도전!
-
새벽 2시에 3
일본 버튜버 보는 나 도태한남의 표본이네
-
2012~2021년 어떤 모바일게임 이름을 대도 관련 썰이 몇개씩 생각남 ㅋㅋㅋ
-
현역 때 임정환 들었고 딱히 나쁘진 않은데 엄청 좋다!도 아니라서 이대로 갈지 말지...
-
초콜릿 상자는 여러분을 좋아합니다.
-
무려 1시간이 넘는 시간동안 전체 풀이를 다시 다 검토했다는 점 심지어 문제 자체가...
-
아효.. 추워
-
작수44445 6평32323 9평31212 올수33334 지거국 낮과 갈거같은데…...
수학에서의개념은 찐빵에서의팥
팥의 찐빵은 개념의 수학인가용?
일단 닉보고 좋아요 누름